The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 2203
Back to Result List

ICBM Integrated Combined Baseline Modification

  • Accelerograms are the primary source for characterizing strong ground motion. It is therefore of paramount interest to have high-quality recordings free from any nonphysical contamination. Frequently, accelerograms are affected by baseline jumps and drifts, either related to the instrument and/or a major earthquake. In this work, I propose a correction method for these undesired baseline drifts based on segmented linear least squares. The algorithm operates on the integrated waveforms and combines all three instrument components to estimate a model that modifies the baseline to be at zero continuously. The procedure consists of two steps: first a suite of models with variable numbers of discontinuities is derived for all three instrument components. During this process, the number of discontinuities is reduced in a parsimonious way, for example, two very close discontinuities are merged into a single one. In the second step, the optimal model is selected on the basis of the Bayesian information criterion. I exemplify the applicationAccelerograms are the primary source for characterizing strong ground motion. It is therefore of paramount interest to have high-quality recordings free from any nonphysical contamination. Frequently, accelerograms are affected by baseline jumps and drifts, either related to the instrument and/or a major earthquake. In this work, I propose a correction method for these undesired baseline drifts based on segmented linear least squares. The algorithm operates on the integrated waveforms and combines all three instrument components to estimate a model that modifies the baseline to be at zero continuously. The procedure consists of two steps: first a suite of models with variable numbers of discontinuities is derived for all three instrument components. During this process, the number of discontinuities is reduced in a parsimonious way, for example, two very close discontinuities are merged into a single one. In the second step, the optimal model is selected on the basis of the Bayesian information criterion. I exemplify the application on synthetic waveforms with known discontinuities and on observed waveforms from a unified strong-motion database of the Japan Meteorological Agency (JMA) and the National Research Institute for Earth Science and Disaster Prevention (NIED, Japan) networks for the major events of the 2016 Kumamoto earthquakes. After the baseline jump correction, the waveforms are furthermore corrected for displacement according to Wang et al.(2011). The resulting displacements are comparable to the Interferometric Synthetic Aperture Radar-derived displacement estimates for the Kumamoto earthquake sequence.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sebastian von SpechtORCiDGND
DOI:https://doi.org/10.1785/0220190134
ISSN:0895-0695
ISSN:1938-2057
Title of parent work (English):Seismological research letters
Subtitle (English):an algorithm for segmented baseline estimation
Publisher:Seismological Society of America, Eastern Section
Place of publishing:Boulder, Colo.
Publication type:Article
Language:English
Date of first publication:2019/11/13
Publication year:2020
Release date:2023/06/02
Volume:91
Issue:1
Number of pages:13
First page:475
Last Page:487
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.