• search hit 19 of 972
Back to Result List

Causes for slow weathering and erosion in the steep, warm, monsoon-subjected Highlands of Sri Lanka

Ursache von langsamer Verwitterung und Erosion im steilen, warmen und Monsun-beeinflussten Hochland von Sri Lanka

  • In the Highlands of Sri Lanka, erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. I used detailed textural, mineralogical, chemical, and electron-microscopic (SEM, FIB, TEM) analyses to identify the factors limiting the rate of weathering front advance in the profile, the sequence of weathering reactions, and the underlying mechanisms. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation, followed by in situ biotite oxidation. Bulk dissolution of the primary minerals is best described with a dissolution – re-precipitation process, as no chemical gradients towards the mineral surface and sharp structural boundaries are observed at the nm scale. Only the local oxidation inIn the Highlands of Sri Lanka, erosion and chemical weathering rates are among the lowest for global mountain denudation. In this tropical humid setting, highly weathered deep saprolite profiles have developed from high-grade metamorphic charnockite during spheroidal weathering of the bedrock. The spheroidal weathering produces rounded corestones and spalled rindlets at the rock-saprolite interface. I used detailed textural, mineralogical, chemical, and electron-microscopic (SEM, FIB, TEM) analyses to identify the factors limiting the rate of weathering front advance in the profile, the sequence of weathering reactions, and the underlying mechanisms. The first mineral attacked by weathering was found to be pyroxene initiated by in situ Fe oxidation, followed by in situ biotite oxidation. Bulk dissolution of the primary minerals is best described with a dissolution – re-precipitation process, as no chemical gradients towards the mineral surface and sharp structural boundaries are observed at the nm scale. Only the local oxidation in pyroxene and biotite is better described with an ion by ion process. The first secondary phases are oxides and amorphous precipitates from which secondary minerals (mainly smectite and kaolinite) form. Only for biotite direct solid state transformation to kaolinite is likely. The initial oxidation of pyroxene and biotite takes place in locally restricted areas and is relatively fast: log J = -11 molmin/(m2 s). However, calculated corestone-scale mineral oxidation rates are comparable to corestone-scale mineral dissolution rates: log R = -13 molpx/(m2 s) and log R = -15 molbt/(m2 s). The oxidation reaction results in a volume increase. Volumetric calculations suggest that this observed oxidation leads to the generation of porosity due to the formation of micro-fractures in the minerals and the bedrock allowing for fluid transport and subsequent dissolution of plagioclase. At the scale of the corestone, this fracture reaction is responsible for the larger fractures that lead to spheroidal weathering and to the formation of rindlets. Since these fractures have their origin from the initial oxidational induced volume increase, oxidation is the rate limiting parameter for weathering to take place. The ensuing plagioclase weathering leads to formation of high secondary porosity in the corestone over a distance of only a few cm and eventually to the final disaggregation of bedrock to saprolite. As oxidation is the first weathering reaction, the supply of O2 is a rate-limiting factor for chemical weathering. Hence, the supply of O2 and its consumption at depth connects processes at the weathering front with erosion at the surface in a feedback mechanism. The strength of the feedback depends on the relative weight of advective versus diffusive transport of O2 through the weathering profile. The feedback will be stronger with dominating diffusive transport. The low weathering rate ultimately depends on the transport of O2 through the whole regolith, and on lithological factors such as low bedrock porosity and the amount of Fe-bearing primary minerals. In this regard the low-porosity charnockite with its low content of Fe(II) bearing minerals impedes fast weathering reactions. Fresh weatherable surfaces are a pre-requisite for chemical weathering. However, in the case of the charnockite found in the Sri Lankan Highlands, the only process that generates these surfaces is the fracturing induced by oxidation. Tectonic quiescence in this region and low pre-anthropogenic erosion rate (attributed to a dense vegetation cover) minimize the rejuvenation of the thick and cohesive regolith column, and lowers weathering through the feedback with erosion.show moreshow less
  • Erosions- und chemische Verwitterungsraten im srilankischen Hochland gehören zu den langsamsten der globalen Gebirgsdenudationsraten. In diesem tropischen, humiden Gebiet entwickelten sich mächtige Verwitterungsprofile – sogenannte Saprolite – auf spheroidal verwittertem, hochgradig metamorphen Charnockit. Spheroidale Verwitterung führt zu abgerundeten „corestones“ mit abgesplitterten Rinden („rindlets“) an der Gesteins – Saprolit Grenze. Zur Identifizierung der ratenlimitierenden Faktoren des Fortschreiten der Verwitterungsfront, der Sequenz der Verwitterungsreaktionen und der dahinterliegenden Mechanismen nutzte ich detaillierte gesteinsstrukturelle, mineralogische, chemische und elektronenmikroskopische (SEM, FIB, TEM) Analysemethoden. Die initiale Verwitterung beginnt mit lokal begrenzter in situ Oxidation in Pyroxen, gefolgt von in situ Oxidation von Biotit. Die Auflösung der Minerale wird am besten durch einen Auflöse – Wiederausfällungs-prozess beschrieben, da zur Mineralgrenze hin keine chemischen Gradienten, dafür aber aufErosions- und chemische Verwitterungsraten im srilankischen Hochland gehören zu den langsamsten der globalen Gebirgsdenudationsraten. In diesem tropischen, humiden Gebiet entwickelten sich mächtige Verwitterungsprofile – sogenannte Saprolite – auf spheroidal verwittertem, hochgradig metamorphen Charnockit. Spheroidale Verwitterung führt zu abgerundeten „corestones“ mit abgesplitterten Rinden („rindlets“) an der Gesteins – Saprolit Grenze. Zur Identifizierung der ratenlimitierenden Faktoren des Fortschreiten der Verwitterungsfront, der Sequenz der Verwitterungsreaktionen und der dahinterliegenden Mechanismen nutzte ich detaillierte gesteinsstrukturelle, mineralogische, chemische und elektronenmikroskopische (SEM, FIB, TEM) Analysemethoden. Die initiale Verwitterung beginnt mit lokal begrenzter in situ Oxidation in Pyroxen, gefolgt von in situ Oxidation von Biotit. Die Auflösung der Minerale wird am besten durch einen Auflöse – Wiederausfällungs-prozess beschrieben, da zur Mineralgrenze hin keine chemischen Gradienten, dafür aber auf der nm-Skala scharfe strukturelle Grenzen zu beobachten sind. Die ersten ausfallenden Sekundärphasen sind Oxide und amorphe Phasen aus denen sich Sekundärmineral (hauptsächlich Smectit und Kaolinit) bilden. Für Biotit ist auch eine direkte Umwandlung im Festzustand zu Kaolinit möglich. Die initiale Pyroxen- und Biotitoxidation ist relativ schnell: log J = -11 molmin/(m2 s). Berechnete Oxidationsraten auf der corestone-Skala (cm) sind vergleichbar zu Auflöseraten auf derselben Skala: log R = -13 molpx/(m2 s) und log R = -15 molbt/(m2 s). Volumetrische Berechnungen führen zum Schluss, dass die Oxidation mit einhergehender Volumenzunahme zur Entwicklung von Mikrofrakturen in den Mineralen und dem Gesamtgestein führt. Diese begünstigen Fluidtransport und damit einhergehende Plagioklasverwitterung. Des Weiteren ist diese Oxidationsreaktion verantwortlich für die Entstehung der Frakturen bei spheroidaler Verwitterung des Gesteins, welche die „rindlets“ vom „corestone“ abgrenzen. Daraus kann geschlossen werden, dass in situ Oxidation der ratenlimitierende Prozess bei der Verwitterung ist. Plagioklasverwitterung führt zu einer hohen Porositätszunahme und der endgültigen Umwandlung von Gestein zu Saprolit. Da Oxidation die erste Verwitterungsreaktion ist, verbinden die Zuführung und der Verbrauch von O2 zur, beziehungsweise an die Verwitterungsfront Erosion an der Oberfläche mit Prozessen an der Verwitterungsfront über einen Feedbackmechanismus. Daher hängt die langsame Verwitterungsrate letztlich vom Sauerstofftransport durch das Verwitterungsprofil und von lithologischen Faktoren des Charnockit wie zum Beispiel geringe Gesteinsporosität und/oder wenige Fe(II)-haltige Primärminerale ab. Des Weiteren ist der einzige Prozess im Charnockit der frische verwitterbare Oberflächen (eine Voraussetzung für chemische Verwitterung) generiert die oxidations-induzierte Frakturierung. Darüber hinaus minimieren die Abwesenheit von tektonischer Aktivität und geringe prä-anthropogene Erosionsraten in dieser Region den Abtrag des mächtigen und kohäsiven Verwitterungsprofils und somit über den beschriebenen Feedback auch die chemische Verwitterungsrate.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Ricarda Behrens
URN:urn:nbn:de:kobv:517-opus4-408503
Advisor:Friedhelm von Blanckenburg, Manfred R. Strecker
Document Type:Doctoral Thesis
Language:English
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2018/02/06
Release Date:2018/04/10
Tag:Charnockit; Erosion; Mineralverwitterungsreaktionen; Saprolit; Sri Lanka; Verwitterungsfeedback; chemische Verwitterung; kritische Zone
Sri Lanka; charnockite; chemical weathering; critical zone; erosion; mineral weathering reactions; saprolite; weathering feedback
Pagenumber:ix, 107, XXIV
Organizational units:Extern / Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht