• search hit 1 of 1
Back to Result List

Planetary mapping tools applied to floor-fractured craters on Mars

Planetare Analysewerkzeuge am Anwendungsgebiet von Kratern mit zerbrochenen Boeden auf dem Mars

  • Planetary research is often user-based and requires considerable skill, time, and effort. Unfortunately, self-defined boundary conditions, definitions, and rules are often not documented or not easy to comprehend due to the complexity of research. This makes a comparison to other studies, or an extension of the already existing research, complicated. Comparisons are often distorted, because results rely on different, not well defined, or even unknown boundary conditions. The purpose of this research is to develop a standardized analysis method for planetary surfaces, which is adaptable to several research topics. The method provides a consistent quality of results. This also includes achieving reliable and comparable results and reducing the time and effort of conducting such studies. A standardized analysis method is provided by automated analysis tools that focus on statistical parameters. Specific key parameters and boundary conditions are defined for the tool application. The analysis relies on a database in which all keyPlanetary research is often user-based and requires considerable skill, time, and effort. Unfortunately, self-defined boundary conditions, definitions, and rules are often not documented or not easy to comprehend due to the complexity of research. This makes a comparison to other studies, or an extension of the already existing research, complicated. Comparisons are often distorted, because results rely on different, not well defined, or even unknown boundary conditions. The purpose of this research is to develop a standardized analysis method for planetary surfaces, which is adaptable to several research topics. The method provides a consistent quality of results. This also includes achieving reliable and comparable results and reducing the time and effort of conducting such studies. A standardized analysis method is provided by automated analysis tools that focus on statistical parameters. Specific key parameters and boundary conditions are defined for the tool application. The analysis relies on a database in which all key parameters are stored. These databases can be easily updated and adapted to various research questions. This increases the flexibility, reproducibility, and comparability of the research. However, the quality of the database and reliability of definitions directly influence the results. To ensure a high quality of results, the rules and definitions need to be well defined and based on previously conducted case studies. The tools then produce parameters, which are obtained by defined geostatistical techniques (measurements, calculations, classifications). The idea of an automated statistical analysis is tested to proof benefits but also potential problems of this method. In this study, I adapt automated tools for floor-fractured craters (FFCs) on Mars. These impact craters show a variety of surface features, occurring in different Martian environments, and having different fracturing origins. They provide a complex morphological and geological field of application. 433 FFCs are classified by the analysis tools due to their fracturing process. Spatial data, environmental context, and crater interior data are analyzed to distinguish between the processes involved in floor fracturing. Related geologic processes, such as glacial and fluvial activity, are too similar to be separately classified by the automated tools. Glacial and fluvial fracturing processes are merged together for the classification. The automated tools provide probability values for each origin model. To guarantee the quality and reliability of the results, classification tools need to achieve an origin probability above 50 %. This analysis method shows that 15 % of the FFCs are fractured by intrusive volcanism, 20 % by tectonic activity, and 43 % by water & ice related processes. In total, 75 % of the FFCs are classified to an origin type. This can be explained by a combination of origin models, superposition or erosion of key parameters, or an unknown fracturing model. Those features have to be manually analyzed in detail. Another possibility would be the improvement of key parameters and rules for the classification. This research shows that it is possible to conduct an automated statistical analysis of morphologic and geologic features based on analysis tools. Analysis tools provide additional information to the user and are therefore considered assistance systems.show moreshow less
  • Planetenforschung umfasst oft zeitintensive Projekte, bei denen Expertise und Erfahrung eine wesentliche Rolle spielen. Auf Grund äusserst komplexer und sich selten wiederholender Forschungsfragen sind Annahmen, Definitionen und Regeln zur Lösung dieser Fragen nicht leicht nachvollziehbar oder aber nicht eindeutig dokumentiert. Ein Vergleich der Ergebnisse unterschiedlicher Forscher zum selben Thema oder eine Erweiterung der Forschungsfrage macht dies somit nur schwer möglich. Vergleiche liefern oftmals verzerrte Ergebnisse, da die Ausgangslage und Randbedingungen unterschiedlich definiert worden sind. Das Ziel dieser Arbeit ist es eine Standardmethode zur Oberflächenanalyse zu entwickeln, die auf zahlreiche Untersuchungsfragen angewandt werden kann. Eine gleichbleibende Qualität der Ergebnisse muss durch diese Methode gewährleistet sein. Ein weiteres Ziel ist es, dass diese Methode ohne Vorwissen und Expertise angewandt werden kann und die Ergebnisse in kurzer Zeit vorliegen. Ausserdem müssen die Ergebnisse vergleichbar undPlanetenforschung umfasst oft zeitintensive Projekte, bei denen Expertise und Erfahrung eine wesentliche Rolle spielen. Auf Grund äusserst komplexer und sich selten wiederholender Forschungsfragen sind Annahmen, Definitionen und Regeln zur Lösung dieser Fragen nicht leicht nachvollziehbar oder aber nicht eindeutig dokumentiert. Ein Vergleich der Ergebnisse unterschiedlicher Forscher zum selben Thema oder eine Erweiterung der Forschungsfrage macht dies somit nur schwer möglich. Vergleiche liefern oftmals verzerrte Ergebnisse, da die Ausgangslage und Randbedingungen unterschiedlich definiert worden sind. Das Ziel dieser Arbeit ist es eine Standardmethode zur Oberflächenanalyse zu entwickeln, die auf zahlreiche Untersuchungsfragen angewandt werden kann. Eine gleichbleibende Qualität der Ergebnisse muss durch diese Methode gewährleistet sein. Ein weiteres Ziel ist es, dass diese Methode ohne Vorwissen und Expertise angewandt werden kann und die Ergebnisse in kurzer Zeit vorliegen. Ausserdem müssen die Ergebnisse vergleichbar und nachvollziehbar sein. Automatisch operierende Analysewerkzeuge können die zahlreichen Anforderungen erfüllen und als Standardmethode dienen. Statistische Ergebnisse werden durch diese Methode erzielt. Die Werkzeuge basieren auf vordefinierten, geowissenschaftlichen Techniken und umfassen Messungen, Berechnungen und Klassifikationen der zu untersuchenden Oberflächenstrukturen. Für die Anwendung dieser Werkzeuge müssen Schlüsselstrukturen und Randbedingungen definiert werden. Des Weiteren benötigen die Werkzeuge eine Datenbank, in der alle Oberflächenstrukturen, aber auch Informationen zu den Randbedingungen gespeichert sind. Es ist mit geringem Aufwand möglich, Datenbanken zu aktualisieren und sie auf verschiedenste Fragestellungen zu adaptieren. Diese Tatsache steigert die Flexibilität, Reproduzierbarkeit und auch Vergleichbarkeit der Untersuchung. Die vordefinierten Randbedingungen und die Qualität der Datenbank haben jedoch auch direkten Einfluss auf die Qualität der Ergebnisse. Um eine gleichbleibend hohe Qualität der Untersuchung zu gewährleisten muss sichergestellt werden, dass alle vordefinierten Bedingungen eindeutig sind und auf vorheriger Forschung basieren. Die automatisch operierenden Analysewerkzeuge müssen als mögliche Standardmethode getestet werden. Hierbei geht es darum Vorteile, aber auch Nachteile zu identifizieren und zu bewerten. In dieser Arbeit werden die Analysewerkzeuge auf einen bestimmten Einschlagskratertyp auf dem Mars angewandt. Krater mit zerbrochenen Kraterböden (Floor-Fractured Craters) sind in verschiedensten Regionen auf dem Mars zu finden, sie zeigen zahlreiche Oberflächenstrukturen und wurden durch unterschiedliche Prozesse geformt. All diese Fakten machen diesen Kratertyp zu einem interessanten und im geologischen und morphologischen Sinne sehr komplexen Anwendungsgebiet. 433 Krater sind durch die Werkzeuge analysiert und je nach Entstehungsprozess klassifiziert worden. Für diese Analyse sind Position der Krater, Art des Umfeldes und Strukturen im Kraterinneren ausschlaggebend. Die kombinierten Informationen geben somit Auskunft über die Prozesse, welche zum Zerbrechen des Kraterbodens geführt haben. Die entwickelten Analysewerkzeuge können geologische Prozesse, die sehr ähnlich zueinander sind, von einander abhängig sind und zusätzlich auch dieselben Oberflächenstrukturen formen, nicht eindeutig unterscheiden. Aus diesem Grund sind fluviale und glaziale Entstehungsprozesse für den untersuchten Kratertyp zusammengefasst. Die Analysewerkzeuge liefern Wahrscheinlichkeitswerte für drei mögliche Entstehungsarten. Um die Qualität der Ergebnisse zu verbessern muss eine Wahrscheinlichkeit über 50 % erreicht werden. Die Werkzeuge zeigen, dass 15 % der Krater durch Vulkanismus, 20 % durch Tektonik und 43 % durch Wasser- und Eis-bedingte Prozesse gebildet wurden. Insgesamt kann für 75 % des untersuchten Kratertyps ein potentieller Entstehungsprozess zugeordnet werden. Für 25 % der Krater ist eine Klassifizierung nicht möglich. Dies kann durch eine Kombination von geologischen Prozessen, einer Überprägung von wichtigen Schlüsselstrukturen, oder eines bisher nicht berücksichtigten Prozesses erklärt werden. Zusammenfassend ist zu sagen, dass es möglich ist planetare Oberflächenstrukturen quantitativ durch automatisch operierende Analysewerkzeuge zu erfassen und hinsichtlich einer definierten Fragestellung zu klassifizieren. Zusätzliche Informationen können durch die entwickelten Werkzeuge erhalten werden, daher sind sie als Assistenzsystem zu betrachten.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Marlene BambergGND
URN:urn:nbn:de:kobv:517-opus-72104
Advisor:Hartmut Asche
Document Type:Doctoral Thesis
Language:English
Year of Completion:2014
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2014/07/29
Release Date:2014/12/18
Tag:Automatisierung; Datenbank; Geomorphologie; Klassifizierung; geologische Prozesse
automation; classification; database; geological processes; geomorphology
RVK - Regensburg Classification:US 8400
RVK - Regensburg Classification:RB 10247
RVK - Regensburg Classification:RB 10106
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International