The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 3439
Back to Result List

Solubility limits and phase stabilizing effects of mixed hybrid perovskites

  • In recent years the development of renewable energy sources attracted much attention due to the increasing environmental pollution induced by burning fossil fuels. The growing public interest in reducing greenhouse gases and the use of pollution-free energies (bio-mass-, geothermal-, solar-, water- or wind energy) paved the way for scientific research in renewable energies. [1] Solar energy provides unlimited access and offers high applicational flexibility, which is needed for energy consumption in a modern society. The scientific interest in photovoltaics (PV) nowadays focuses on discovering new materials and improving materials properties, aiming for the production of highly efficient solar cells. Lately, a new type of absorber material based on the perovskite type structure reached power conversion efficiencies of more than 24%. [2] By varying the chemical composition the electronic properties as e.g. the band gap energy can be tuned to increase the absorption range of this absorber material. This makes them in particularIn recent years the development of renewable energy sources attracted much attention due to the increasing environmental pollution induced by burning fossil fuels. The growing public interest in reducing greenhouse gases and the use of pollution-free energies (bio-mass-, geothermal-, solar-, water- or wind energy) paved the way for scientific research in renewable energies. [1] Solar energy provides unlimited access and offers high applicational flexibility, which is needed for energy consumption in a modern society. The scientific interest in photovoltaics (PV) nowadays focuses on discovering new materials and improving materials properties, aiming for the production of highly efficient solar cells. Lately, a new type of absorber material based on the perovskite type structure reached power conversion efficiencies of more than 24%. [2] By varying the chemical composition the electronic properties as e.g. the band gap energy can be tuned to increase the absorption range of this absorber material. This makes them in particular attractive for use in tandem solar cells, where silicon and perovskite absorber layers are combined to absorb a large range of the vible light (28.0% efficiency). [2] However, perovskite based solar cells not only suffer from fast degradation when exposed to humidity, but also from the use of toxic elements (e.g. lead), which can result in long-term environmental damage. Therefore, the aim of this study was to determine the fundamental structural and optoelectronical properties of highly interesting hybrid perovskite materials, the MAPbX3 solid solution (MA=CH3NH3; X=I,Br,Cl) and the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution (FA=HC(NH2)2). The study was performed on powder samples by using X-ray diffraction, revealing the crystal structure and solubility behavior of all solid solutions. Moreover the temperature-dependent behavior was studied using in-situ high resolution synchrotron X-ray diffraction and combinatorial thermal analysis methods. The influence of compositional changes on the band gap energy variation were observed using spectroscopic methods as photoluminescence and diffuse reflectance spectroscopy. The obtained results have shown that for the MAPb(I1-xBrx)3 solid solution a large miscibility gap in the range of 0.29 ( ± 0.02) ≤ x ≤ 0.92 ( ± 0.02) is present. This miscibility gap limits the suitable compositional range for use in thin film solar cells of mixed halide compounds. From the temperature-dependent in-situ synchrotron X-ray diffraction studies the complete T-X-phase diagram was established. Studies on the MAPb(Cl1-xBrx)3 solid solution revealed that MAPb(Cl1-xBrx)3 forms a complete solid solution series. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution the aim was to study the formation of the d-modification in FAPbI3, which is undesired for solar cell application. This can be overcome by stabilizing the favored high temperature cubic a-modification at ambient conditions. By partial substituting the formamidinium molecule by methylammonium and cesium the stabilization of the cubic modification was successful. The solubility limit of FA1-xCsxPbI3 solid solution was determined to be x=0.1, while a full miscibility was observed for the FA1-xMAxPbI3 solid solution. For the triple cation (FA1-xMAx)1-yCsyPbI3 solid solution a solubility limit of cesium was observed to be y=0.1. The optoelectronic properties were investigated, revealing a linear change of band gap energy with chemical composition. It is demonstrated that the stabilized triple cation compound with cubic perovskite-type crystal structure shows enhanced stability of approximately six months. Furthermore, a short insight into lead-free perovskite-type materials is given, using germanium as non-toxic alternative to lead. For germanium based perovskites a fast decomposition in air was observed, due to the preferred formation of GeI4 in oxygen atmosphere. In-situ low temperature synchrotron X-ray diffraction measurements revealed a yet unknown low temperature modification of MAGeI3. [1] WESSELAK, Viktor; SCHABBACH, Thomas; LINK, Thomas; FISCHER, Joachim: Handbuch Regenerative Energietechnik. Springer, 2017 [2] NREL: Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf. – 25.04.2019show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Frederike Felizia LehmannORCiD
Reviewer(s):Andreas TaubertORCiDGND, Susan SchorrORCiDGND, Thorsten Gesing
Supervisor(s):Andreas Taubert, Susan Schorr
Publication type:Doctoral Thesis
Language:English
Year of first publication:2020
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/03/18
Release date:2020/06/11
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.