• search hit 53 of 90
Back to Result List

Molecular composites with enhanced energy density for electroactive polymers

  • Actuators based on soft dielectric elastomers deform due to electric field induced Maxwell's stress, interacting with the mechanical properties of the material. The relatively high operating voltages of such actuators can be reduced by increasing the permittivity of the active material, while maintaining the mechanical properties and high electrical breakdown strength. Approaches relying on the use of highly polarizable molecules or conjugated polymers have so far provided the best results, however it has been difficult to maintain high breakdown strengths. In this work, a new approach for increasing the electrostatic energy density of a soft polymer based on molecular composites is presented, relying on chemically grafting soft gel-state pi-conjugated conducting macromolecules (polyaniline (PANI)) to a flexible elastomer backbone SEBS-g-MA (poly-styrene-co-ethylene-co-butylene-co-styrene-g-maleic anhydride). The approach was found to result in composites of increased permittivity (470% over the elastomer matrix) with hardly anyActuators based on soft dielectric elastomers deform due to electric field induced Maxwell's stress, interacting with the mechanical properties of the material. The relatively high operating voltages of such actuators can be reduced by increasing the permittivity of the active material, while maintaining the mechanical properties and high electrical breakdown strength. Approaches relying on the use of highly polarizable molecules or conjugated polymers have so far provided the best results, however it has been difficult to maintain high breakdown strengths. In this work, a new approach for increasing the electrostatic energy density of a soft polymer based on molecular composites is presented, relying on chemically grafting soft gel-state pi-conjugated conducting macromolecules (polyaniline (PANI)) to a flexible elastomer backbone SEBS-g-MA (poly-styrene-co-ethylene-co-butylene-co-styrene-g-maleic anhydride). The approach was found to result in composites of increased permittivity (470% over the elastomer matrix) with hardly any reduction in breakdown strength (from 140 to 120 V mu m(-1)), resulting in a large increase in stored electrostatic energy. This led to an improvement in the measured electromechanical response as well as in the maximum actuation strain. A transition was observed when amounts of PANI exceeded 2 vol%, which was ascribed to the exhaustion of the MA- functionality of the SEBS-g-MA. The transition led to drastic increases in permittivity and conductivity, and a sharp drop in electrical breakdown strength. Although the transition caused further improvement of the electromechanical response, the reduction in electrical breakdown strength caused a limitation of the maximum achievable actuation strain.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Hristiyan Stoyanov, Matthias Kollosche, Denis N. McCarthy, Guggi Kofod
URL:http://www.rsc.org/Publishing/Journals/jm/index.asp
DOI:https://doi.org/10.1039/C0jm00519c
ISSN:0959-9428
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Journal of materials chemistry. - ISSN 0959-9428. - 20 (2010), 35, S. 7558 - 7564
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.