The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 30 of 137
Back to Result List

Chain-growth polycondensation of perylene diimide-based copolymers

  • Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to Mw ≈ 50 kg mol−1 and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32–45%) in all-polymer solar cells compared to NDI-based materials (15–30%). Our studies revealedHerein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to Mw ≈ 50 kg mol−1 and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32–45%) in all-polymer solar cells compared to NDI-based materials (15–30%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:W. Liu, R. Tkachov, H. Komber, V. Senkovskyy, M. Schubert, Z. Wei, A. Facchetti, Dieter NeherORCiDGND, A. Kiriy
URN:urn:nbn:de:kobv:517-opus4-98724
Subtitle (English):a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (273)
Publication type:Postprint
Language:English
Date of first publication:2014/01/28
Publication year:2014
Publishing institution:Universität Potsdam
Release date:2016/11/03
Number of pages:8
Source:Polym. Chem. (2014) Nr. 5, S. 3404-3411. - DOI: 10.1039/C3PY01707A
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.