The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 141
Back to Result List

On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres

  • Context. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approachesContext. Spectroscopic analysis remains the most common method to derive masses of massive stars, the most fundamental stellar parameter. While binary orbits and stellar pulsations can provide much sharper constraints on the stellar mass, these methods are only rarely applicable to massive stars. Unfortunately, spectroscopic masses of massive stars heavily depend on the detailed physics of model atmospheres. Aims. We demonstrate the impact of a consistent treatment of the radiative pressure on inferred gravities and spectroscopic masses of massive stars. Specifically, we investigate the contribution of line and continuum transitions to the photospheric radiative pressure. We further explore the effect of model parameters, e.g., abundances, on the deduced spectroscopic mass. Lastly, we compare our results with the plane-parallel TLUSTY code, commonly used for the analysis of massive stars with photospheric spectra. Methods. We calculate a small set of O-star models with the Potsdam Wolf-Rayet (PoWR) code using different approaches for the quasi-hydrostatic part. These models allow us to quantify the effect of accounting for the radiative pressure consistently. We further use PoWR models to show how the Doppler widths of line profiles and abundances of elements such as iron affect the radiative pressure, and, as a consequence, the derived spectroscopic masses. Results. Our study implies that errors on the order of a factor of two in the inferred spectroscopic mass are to be expected when neglecting the contribution of line and continuum transitions to the radiative acceleration in the photosphere. Usage of implausible microturbulent velocities, or the neglect of important opacity sources such as Fe, may result in errors of approximately 50% in the spectroscopic mass. A comparison with TLUSTY model atmospheres reveals a very good agreement with PoWR at the limit of low mass-loss rates.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andreas Alexander Christoph SanderORCiDGND, Tomer ShenarORCiDGND, Rainer HainichGND, Ana Gimenez-Garcia, Helge Tobias TodtORCiD, Wolf-Rainer HamannORCiDGND
DOI:https://doi.org/10.1051/0004-6361/201425356
ISSN:0004-6361
ISSN:1432-0746
Title of parent work (English):Astronomy and astrophysics : an international weekly journal
Publisher:EDP Sciences
Place of publishing:Les Ulis
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:stars: atmospheres; stars: early-type; stars: fundamental parameters; stars: mass-loss; stars: massive; stars: winds, outflows
Volume:577
Number of pages:13
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [HA 1455/22]; Leibniz Graduate School for Quantitative Spectroscopy in Astrophysics; Leibniz Institute for Astrophysics Potsdam (AIP); Institute of Physics and Astronomy of the University of Potsdam; NSF Grant [1066293]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.