The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 16
Back to Result List

Distribution functions of rotating galaxies

Verteilungsfunktionen rotierender Galaxien

  • The work done during the PhD studies has been focused on measurements of distribution functions of rotating galaxies using integral field spectroscopy observations. Throughout the main body of research presented here we have been using CALIFA (Calar Alto Legacy Integral Field Area) survey stellar velocity fields to obtain robust measurements of circular velocities for rotating galaxies of all morphological types. A crucial part of the work was enabled by well-defined CALIFA sample selection criteria: it enabled reconstructing sample-independent distributions of galaxy properties. In Chapter 2, we measure the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating CALIFA galaxies using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early type galaxies. Our initialThe work done during the PhD studies has been focused on measurements of distribution functions of rotating galaxies using integral field spectroscopy observations. Throughout the main body of research presented here we have been using CALIFA (Calar Alto Legacy Integral Field Area) survey stellar velocity fields to obtain robust measurements of circular velocities for rotating galaxies of all morphological types. A crucial part of the work was enabled by well-defined CALIFA sample selection criteria: it enabled reconstructing sample-independent distributions of galaxy properties. In Chapter 2, we measure the distribution in absolute magnitude - circular velocity space for a well-defined sample of 199 rotating CALIFA galaxies using their stellar kinematics. Our aim in this analysis is to avoid subjective selection criteria and to take volume and large-scale structure factors into account. Using stellar velocity fields instead of gas emission line kinematics allows including rapidly rotating early type galaxies. Our initial sample contains 277 galaxies with available stellar velocity fields and growth curve r-band photometry. After rejecting 51 velocity fields that could not be modelled due to the low number of bins, foreground contamination or significant interaction we perform Markov Chain Monte Carlo (MCMC) modelling of the velocity fields, obtaining the rotation curve and kinematic parameters and their realistic uncertainties. We perform an extinction correction and calculate the circular velocity v_circ accounting for pressure support a given galaxy has. The resulting galaxy distribution on the M_r - v_circ plane is then modelled as a mixture of two distinct populations, allowing robust and reproducible rejection of outliers, a significant fraction of which are slow rotators. The selection effects are understood well enough that the incompleteness of the sample can be corrected and the 199 galaxies can be weighted by volume and large-scale structure factors enabling us to fit a volume-corrected Tully-Fisher relation (TFR). More importantly, we also provide the volume-corrected distribution of galaxies in the M_r - v_circ plane, which can be compared with cosmological simulations. The joint distribution of the luminosity and circular velocity space densities, representative over the range of -20 > M_r > -22 mag, can place more stringent constraints on the galaxy formation and evolution scenarios than linear TFR fit parameters or the luminosity function alone. In Chapter 3, we measure one of the marginal distributions of the M_r - v_circ distribution: the circular velocity function of rotating galaxies. The velocity function is a fundamental observable statistic of the galaxy population, being of a similar importance as the luminosity function, but much more difficult to measure. We present the first directly measured circular velocity function that is representative between 60 < v_circ < 320 km s^-1 for galaxies of all morphological types at a given rotation velocity. For the low mass galaxy population 60 < v_circ < 170 km s^-1, we use the HIPASS velocity function. For the massive galaxy population 170 < v_circ < 320 km s^-1, we use stellar circular velocities from CALIFA. The CALIFA velocity function includes homogeneous velocity measurements of both late and early-type rotation-supported galaxies. It has the crucial advantage of not missing gas-poor massive ellipticals that HI surveys are blind to. We show that both velocity functions can be combined in a seamless manner, as their ranges of validity overlap. The resulting observed velocity function is compared to velocity functions derived from cosmological simulations of the z = 0 galaxy population. We find that dark matter-only simulations show a strong mismatch with the observed VF. Hydrodynamic Illustris simulations fare better, but still do not fully reproduce observations. In Chapter 4, we present some other work done during the PhD studies, namely, a method that improves the precision of specific angular measurements by combining simultaneous Markov Chain Monte Carlo modelling of ionised gas 2D velocity fields and HI linewidths. To test the method we use a sample of 25 galaxies from the Sydney-AAO Multi-object Integral field (SAMI) survey that had matching ALFALFA HI linewidths. Such a method allows constraining the rotation curve both in the inner regions of a galaxy and in its outskirts, leading to increased precision of specific angular momentum measurements. It could be used to further constrain the observed relation between galaxy mass, specific angular momentum and morphology (Obreschkow & Glazebrook 2014). Mathematical and computational methods are presented in the appendices.show moreshow less
  • Die Arbeit, die während dises Promotionsstudiums durchgeführt wurde, konzentrierte sich auf die Messungen von Verteilungsfunktionen rotierender Galaxien, unter Verwendung von integralen Feldspektroskopiebeobachtungen. Im Rahmen der hier vorgestellten Hauptforschung haben wir CALIFA (Calar Alto Legacy Integral Field Area) mit stellaren Geschwindigkeitsfeldern verwendet, um robuste Messungen von Kreisförmigen Geschwindigkeiten für rotierende Galaxien aller Morphologien zu erhalten. Der entscheidende Teil dieser Arbeit wurde durch wohl definierte CALIFA-Probenselektionskriterien ermöglicht: Es ermöglichte die Rekonstruktion von probenunabhängigen Verteilungen von Galaxieneigenschaften. In Kapitel 2 messen wir die Verteilung in absoluten Magnituden für eine wohldefinierte Stichprobe von 199 rotierenden CALIFA-Galaxien unter Berücksichtigung ihrer stellaren Kinematik. Die Selektionseffekte sind verstanden genug damit die Unvollständigkeit der Probe korrigiert werden kann und uns ermöglichen eine volumenkorrigierteDie Arbeit, die während dises Promotionsstudiums durchgeführt wurde, konzentrierte sich auf die Messungen von Verteilungsfunktionen rotierender Galaxien, unter Verwendung von integralen Feldspektroskopiebeobachtungen. Im Rahmen der hier vorgestellten Hauptforschung haben wir CALIFA (Calar Alto Legacy Integral Field Area) mit stellaren Geschwindigkeitsfeldern verwendet, um robuste Messungen von Kreisförmigen Geschwindigkeiten für rotierende Galaxien aller Morphologien zu erhalten. Der entscheidende Teil dieser Arbeit wurde durch wohl definierte CALIFA-Probenselektionskriterien ermöglicht: Es ermöglichte die Rekonstruktion von probenunabhängigen Verteilungen von Galaxieneigenschaften. In Kapitel 2 messen wir die Verteilung in absoluten Magnituden für eine wohldefinierte Stichprobe von 199 rotierenden CALIFA-Galaxien unter Berücksichtigung ihrer stellaren Kinematik. Die Selektionseffekte sind verstanden genug damit die Unvollständigkeit der Probe korrigiert werden kann und uns ermöglichen eine volumenkorrigierte Tully-Fisher-Relation (TFR) anzupassen. Noch wichtiger ist es, dass wir auch die volumenkorrigierte Verteilung von Galaxien in der Mr -vcirc Ebene bereitstellen, die mit kosmologischen Simulationen verglichen werden können. In Kapitel 3 messen wir die Kreisgeschwindigkeitsfunktion der rotierenden Galaxien. Die Geschwindigkeitsfunktion ist eine fundamentale, beobachtbare Messgröße der Galaxienpopulationen, welche von ähnlicher Bedeutung ist wie die Helligkeitsfunktion, aber viel schwerer zu messen ist. Wir präsentieren die erste direkt gemessene Kreisgeschwindigkeitsfunktion, die bei einer gegebenen Rotationsgeschwindigkeit zwischen 60 < vcirc < 320 km s ^-1 für Galaxien aller morphologischen Typen repräsentativ ist. Für die Galaxienpopulation mit niedrigen Massen verwenden wir die HIPASSGeschwindigkeitsfunktion. Für die massiven Galaxienpopulationen verwenden wir stellare Kreisgeschwindigkeiten von CALIFA. Die CALIFA-Geschwindigkeitsfunktion umfasst homogene Geschwindigkeitsmessungen sowohl der späten als auch der frühen Rotations-gestützten Galaxien. Wir zeigen, dass beide Geschwindigkeitsfunktionen nahtlos kombiniert werden können, da sich ihre Gültigkeitsbereiche überschneiden. Die resultierende beobachtete Geschwindigkeitsfunktion wird mit Geschwindigkeitsfunktionen verglichen, die von kosmologischen Simulationen bei lokale Galaxien abgeleitet sind. Wir finden, dass dunkle Materie-Simulationen und hydrodynamische Illustris Simulationen reproduzieren immer noch nicht vollständig die Beobachtungen. In Kapitel 4 stellen wir einige andere Arbeiten vor, die während der Promotion durchgeführt wurden. Mathematische und rechnerische Methoden werden in den Anhängen dargestellt.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Simona BekeraitėORCiD
URN:urn:nbn:de:kobv:517-opus4-420950
DOI:https://doi.org/10.25932/publishup-42095
Subtitle (English):an Integral Field Spectroscopy perspective
Subtitle (German):eine Perspektive der Integrale-Feld-Spektroskopie
Supervisor(s):Lutz Wisotzki, Martin M. Roth, Jakob Walcher
Publication type:Doctoral Thesis
Language:English
Publication year:2017
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2018/03/12
Release date:2019/02/07
Tag:Galaxien: Evolution; Galaxien: Kinematik und Dynamik; Galaxien: Statistiken
galaxies: evolution; galaxies: kinematics and dynamics; galaxies: statistics
Number of pages:V, 91
RVK - Regensburg classification:US 3100
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
MSC classification:85-XX ASTRONOMY AND ASTROPHYSICS (For celestial mechanics, see 70F15) / 85Axx Astronomy and astrophysics (For celestial mechanics, see 70F15) / 85A05 Galactic and stellar dynamics
PACS classification:90.00.00 GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS (for more detailed headings, see the Geophysics Appendix) / 98.00.00 Stellar systems; interstellar medium; galactic and extragalactic objects and systems; the Universe / 98.62.-g Characteristics and properties of external galaxies and extragalactic objects (for the Milky Way, see 98.35.-a) / 98.62.Dm Kinematics, dynamics, and rotation
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.