• search hit 17 of 206
Back to Result List

Discriminative Classification Models for Internet Security

Diskriminative Klassifikationsmodelle in der Internet-Sicherheit

  • Services that operate over the Internet are under constant threat of being exposed to fraudulent use. Maintaining good user experience for legitimate users often requires the classification of entities as malicious or legitimate in order to initiate countermeasures. As an example, inbound email spam filters decide for spam or non-spam. They can base their decision on both the content of each email as well as on features that summarize prior emails received from the sending server. In general, discriminative classification methods learn to distinguish positive from negative entities. Each decision for a label may be based on features of the entity and related entities. When labels of related entities have strong interdependencies---as can be assumed e.g. for emails being delivered by the same user---classification decisions should not be made independently and dependencies should be modeled in the decision function. This thesis addresses the formulation of discriminative classification problems that are tailored for the specificServices that operate over the Internet are under constant threat of being exposed to fraudulent use. Maintaining good user experience for legitimate users often requires the classification of entities as malicious or legitimate in order to initiate countermeasures. As an example, inbound email spam filters decide for spam or non-spam. They can base their decision on both the content of each email as well as on features that summarize prior emails received from the sending server. In general, discriminative classification methods learn to distinguish positive from negative entities. Each decision for a label may be based on features of the entity and related entities. When labels of related entities have strong interdependencies---as can be assumed e.g. for emails being delivered by the same user---classification decisions should not be made independently and dependencies should be modeled in the decision function. This thesis addresses the formulation of discriminative classification problems that are tailored for the specific demands of the following three Internet security applications. Theoretical and algorithmic solutions are devised to protect an email service against flooding of user inboxes, to mitigate abusive usage of outbound email servers, and to protect web servers against distributed denial of service attacks. In the application of filtering an inbound email stream for unsolicited emails, utilizing features that go beyond each individual email's content can be valuable. Information about each sending mail server can be aggregated over time and may help in identifying unwanted emails. However, while this information will be available to the deployed email filter, some parts of the training data that are compiled by third party providers may not contain this information. The missing features have to be estimated at training time in order to learn a classification model. In this thesis an algorithm is derived that learns a decision function that integrates over a distribution of values for each missing entry. The distribution of missing values is a free parameter that is optimized to learn an optimal decision function. The outbound stream of emails of an email service provider can be separated by the customer IDs that ask for delivery. All emails that are sent by the same ID in the same period of time are related, both in content and in label. Hijacked customer accounts may send batches of unsolicited emails to other email providers, which in turn might blacklist the sender's email servers after detection of incoming spam emails. The risk of being blocked from further delivery depends on the rate of outgoing unwanted emails and the duration of high spam sending rates. An optimization problem is developed that minimizes the expected cost for the email provider by learning a decision function that assigns a limit on the sending rate to customers based on the each customer's email stream. Identifying attacking IPs during HTTP-level DDoS attacks allows to block those IPs from further accessing the web servers. DDoS attacks are usually carried out by infected clients that are members of the same botnet and show similar traffic patterns. HTTP-level attacks aim at exhausting one or more resources of the web server infrastructure, such as CPU time. If the joint set of attackers cannot increase resource usage close to the maximum capacity, no effect will be experienced by legitimate users of hosted web sites. However, if the additional load raises the computational burden towards the critical range, user experience will degrade until service may be unavailable altogether. As the loss of missing one attacker depends on block decisions for other attackers---if most other attackers are detected, not blocking one client will likely not be harmful---a structured output model has to be learned. In this thesis an algorithm is developed that learns a structured prediction decoder that searches the space of label assignments, guided by a policy. Each model is evaluated on real-world data and is compared to reference methods. The results show that modeling each classification problem according to the specific demands of the task improves performance over solutions that do not consider the constraints inherent to an application.show moreshow less
  • Viele Dienste im Internet benötigen zur Gewährleistung ihrer Erreichbarkeit die Möglichkeit, Entitäten als entweder gefährlich oder harmlos zu klassifizieren. Diskriminative Methoden des maschinellen Lernens verwenden Features von Entitäten oder Entitätengruppen, um zwischen positiven und negativen Labels zu unterscheiden. So können beispielsweise Email-Spamfilter Entscheidungen aufgrund sowohl des Inhalts der Email als auch von Informationen treffen, die vorherige Emails des gleichen versendenden Servers zusammenfassen. Darüber hinaus sind Labels zueinander in Verbindung stehender Entitäten, wie z.B. Emails des gleichen Nutzers, oftmals nicht unabhängig, so dass auch Klassifikationsentscheidungen nicht unabhängig getroffen werden sollten. Diese Arbeit beschäftigt sich mit der Formulierung diskriminativer Klassifikationsprobleme, die den speziellen Anforderungen von drei Internetsicherheitsanwendungen Rechnung tragen. Theoretische und algorithmische Lösungen zum Spamschutz von Nutzer-Inboxen eines Emailanbieters, zum Schutz vonViele Dienste im Internet benötigen zur Gewährleistung ihrer Erreichbarkeit die Möglichkeit, Entitäten als entweder gefährlich oder harmlos zu klassifizieren. Diskriminative Methoden des maschinellen Lernens verwenden Features von Entitäten oder Entitätengruppen, um zwischen positiven und negativen Labels zu unterscheiden. So können beispielsweise Email-Spamfilter Entscheidungen aufgrund sowohl des Inhalts der Email als auch von Informationen treffen, die vorherige Emails des gleichen versendenden Servers zusammenfassen. Darüber hinaus sind Labels zueinander in Verbindung stehender Entitäten, wie z.B. Emails des gleichen Nutzers, oftmals nicht unabhängig, so dass auch Klassifikationsentscheidungen nicht unabhängig getroffen werden sollten. Diese Arbeit beschäftigt sich mit der Formulierung diskriminativer Klassifikationsprobleme, die den speziellen Anforderungen von drei Internetsicherheitsanwendungen Rechnung tragen. Theoretische und algorithmische Lösungen zum Spamschutz von Nutzer-Inboxen eines Emailanbieters, zum Schutz von ausgehenden Emailservern gegen Missbrauch und zur Abwehr von Distributed Denial of Service-Attacken auf Webserver werden entwickelt. Beim Säubern der bei einem Emailanbieter eingehenden Menge von Emails von ungewollten Emails wie Spam können Informationen, die über den Inhalt einzelner Emails hinausgehen, von großem Nutzen sein. Etwa können Informationen über einen Mailserver zeitlich aggregiert und zum Klassifizieren neuer Emails des gleichen Servers verwendet werden. Diese Informationen sind in der Regel nur für Emails verfügbar, die vom Emailanbieter selbst empfangen werden, und fehlen bei Datensätzen, die extern gesammelte Emails beinhalten. Während des Trainings eines Spamklassifikators müssen diese Features entsprechend geschätzt werden. In dieser Arbeit wird ein Algorithmus entwickelt, der eine Entscheidungsfunktion lernt, die über eine Verteilung von fehlenden Werten integriert. Die Verteilung ist ein freier Parameter, der während des Lernens der Entscheidungsfunktion optimiert wird. Der Strom ausgehender Emails eines Emailanbieters setzt sich zusammen aus Emails einzelner Kunden. Alle Emails, die vom gleichen Kunden im gleichen Zeitraum gesendet werden, sind sowohl bzgl. Inhalt als auch Label abhängig. Kompromittierte Kundenaccounts können beispielsweise Batches von Spams an andere Emailanbieter schicken. Nach erfolgter Spamerkennung könnten diese Anbieter die Mailserver des sendenden Anbieters auf eine Blacklist setzen und somit am Versand weiterer Emails hindern. Das Risiko einer solchen Blockierung ist abhängig von der Rate ausgehender ungewollter Emails und der Dauer hoher Senderaten. Es wird ein Optimierungsproblem entwickelt, das die erwarteten Kosten des Emailproviders minimiert, indem eine Entscheidungsfunktion gelernt wird, die die erlaubte Versenderate von Kunden aufgrund der gesendeten Emails dynamisch einstellt. Um angreifende IPs während einer HTTP-Level-DDoS-Attacke zu blockieren, müssen sie als solche erkannt werden. DDoS-Angriffe werden üblicherweise von Clients durchgeführt, die dem gleichen Botnet angehören und ähnliche Traffic-Muster aufweisen. HTTP-Level-Angriffe zielen darauf, eine oder mehrere Ressourcen der Webserverinfrastruktur, wie etwa CPU-Zeit, aufzubrauchen. Für legitime Besucher ergeben sich erst dann Einschränkungen der User Experience, bis hin zur Unerreichbarkeit der Webseite, wenn Angreifer den Ressourcenverbrauch in die Nähe oder über die Maximalkapazität steigern können. Dieser durch einen Angreifer verursachte Verlust hängt von Entscheidungen für andere Angreifer ab; werden z.B. die meisten anderen Angreifer erkannt, wird ein nicht geblockter Angreifer kaum Schaden anrichten. Es wird deshalb ein Algorithmus entwickelt, der einen Dekodierer für strukturierte Vorhersagen trainiert, der, geleitet durch eine Policy, den Raum der gemeinsamen Labelzuweisungen durchsucht. Alle Modelle werden auf industriellen Daten evaluiert und mit Referenzmethoden verglichen. Die Ergebnisse zeigen, dass anforderungsspezifische Modellierung der Klassifikationsprobleme die Performance gegenüber den Vergleichsmethoden verbessert.show moreshow less

Download full text files

  • SHA-1:fc53dfc435b5cd844a75262e35ac8687cac85ee1

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Uwe DickGND
URN:urn:nbn:de:kobv:517-opus4-102593
Subtitle (English):Mitigating Email Spam and HTTP-Layer DDoS Attacks
Subtitle (German):Verhindern von Email-Spam und HTTP-Layer DDoS-Attacken
Advisor:Tobias Scheffer
Document Type:Doctoral Thesis
Language:English
Year of first Publication:2017
Year of Completion:2016
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2017/01/09
Release Date:2017/02/07
Tag:DDoS; Internet-Sicherheit; Maschinelles Lernen; Spam-Erkennung
DDoS; Internet Security; Machine Learning; Spam-Filtering
Pagenumber:x, 57
RVK - Regensburg Classification:ST 302
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
CCS Classification:I. Computing Methodologies / I.5 PATTERN RECOGNITION / I.5.0 General
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht