• search hit 30 of 41
Back to Result List

Representation of semiautomata by canonical words and equivalences

  • We study a novel representation of semiautomata, which is motivated by the method of trace-assertion specifications of software modules. Each state of the semiautomaton is represented by an arbitrary word leading to that state, the canonical word. The transitions of the semiautomaton give rise to a right congruence, the state-equivalence, on the set of input words of the semiautomaton: two words are state-equivalent if and only if they lead to the same state. We present a simple algorithm for finding a set of generators for state-equivalence. Directly from this set of generators, we construct a confluent prefix-rewriting system which permits us to transform any word to its canonical representative. In general, the rewriting system may allow infinite derivations. To address this issue, we impose the condition of prefix-continuity on the set of canonical words. A set is prefix-continuous if, whenever a word w and a prefix u of w axe in the set, then all the prefixes of w longer than u are also in the set. Prefix-continuous sets includeWe study a novel representation of semiautomata, which is motivated by the method of trace-assertion specifications of software modules. Each state of the semiautomaton is represented by an arbitrary word leading to that state, the canonical word. The transitions of the semiautomaton give rise to a right congruence, the state-equivalence, on the set of input words of the semiautomaton: two words are state-equivalent if and only if they lead to the same state. We present a simple algorithm for finding a set of generators for state-equivalence. Directly from this set of generators, we construct a confluent prefix-rewriting system which permits us to transform any word to its canonical representative. In general, the rewriting system may allow infinite derivations. To address this issue, we impose the condition of prefix-continuity on the set of canonical words. A set is prefix-continuous if, whenever a word w and a prefix u of w axe in the set, then all the prefixes of w longer than u are also in the set. Prefix-continuous sets include prefix-free and prefix-closed sets as special cases. We prove that the rewriting system is Noetherian if and only if the set of canonical words is prefix-continuous. Furthermore, if the set of canonical words is prefix- continuous, then the set of rewriting rules is irredundant. We show that each prefix-continuous canonical set corresponds to a spanning forest of the semiautomatonshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:J. A. Brzozowski, Helmut Jürgensen
ISSN:0129-0541
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:International Journal of Foundations of Computer Science. - ISSN 0129-0541. - 16 (2005), 5, S. 831 - 850
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.