• search hit 2 of 478
Back to Result List

High-Speed Security Log Analytics Using Hybrid Outlier Detection

  • The rapid development and integration of Information Technologies over the last decades influenced all areas of our life, including the business world. Yet not only the modern enterprises become digitalised, but also security and criminal threats move into the digital sphere. To withstand these threats, modern companies must be aware of all activities within their computer networks. The keystone for such continuous security monitoring is a Security Information and Event Management (SIEM) system that collects and processes all security-related log messages from the entire enterprise network. However, digital transformations and technologies, such as network virtualisation and widespread usage of mobile communications, lead to a constantly increasing number of monitored devices and systems. As a result, the amount of data that has to be processed by a SIEM system is increasing rapidly. Besides that, in-depth security analysis of the captured data requires the application of rather sophisticated outlier detection algorithms that have aThe rapid development and integration of Information Technologies over the last decades influenced all areas of our life, including the business world. Yet not only the modern enterprises become digitalised, but also security and criminal threats move into the digital sphere. To withstand these threats, modern companies must be aware of all activities within their computer networks. The keystone for such continuous security monitoring is a Security Information and Event Management (SIEM) system that collects and processes all security-related log messages from the entire enterprise network. However, digital transformations and technologies, such as network virtualisation and widespread usage of mobile communications, lead to a constantly increasing number of monitored devices and systems. As a result, the amount of data that has to be processed by a SIEM system is increasing rapidly. Besides that, in-depth security analysis of the captured data requires the application of rather sophisticated outlier detection algorithms that have a high computational complexity. Existing outlier detection methods often suffer from performance issues and are not directly applicable for high-speed and high-volume analysis of heterogeneous security-related events, which becomes a major challenge for modern SIEM systems nowadays. This thesis provides a number of solutions for the mentioned challenges. First, it proposes a new SIEM system architecture for high-speed processing of security events, implementing parallel, in-memory and in-database processing principles. The proposed architecture also utilises the most efficient log format for high-speed data normalisation. Next, the thesis offers several novel high-speed outlier detection methods, including generic Hybrid Outlier Detection that can efficiently be used for Big Data analysis. Finally, the special User Behaviour Outlier Detection is proposed for better threat detection and analysis of particular user behaviour cases. The proposed architecture and methods were evaluated in terms of both performance and accuracy, as well as compared with classical architecture and existing algorithms. These evaluations were performed on multiple data sets, including simulated data, well-known public intrusion detection data set, and real data from the large multinational enterprise. The evaluation results have proved the high performance and efficacy of the developed methods. All concepts proposed in this thesis were integrated into the prototype of the SIEM system, capable of high-speed analysis of Big Security Data, which makes this integrated SIEM platform highly relevant for modern enterprise security applications.show moreshow less
  • In den letzten Jahrzehnten hat die schnelle Weiterentwicklung und Integration der Informationstechnologien alle Bereich unseres Lebens beeinflusst, nicht zuletzt auch die Geschäftswelt. Aus der zunehmenden Digitalisierung des modernen Unternehmens ergeben sich jedoch auch neue digitale Sicherheitsrisiken und kriminelle Bedrohungen. Um sich vor diesen Bedrohungen zu schützen, muss das digitale Unternehmen alle Aktivitäten innerhalb seines Firmennetzes verfolgen. Der Schlüssel zur kontinuierlichen Überwachung aller sicherheitsrelevanten Informationen ist ein sogenanntes Security Information und Event Management (SIEM) System, das alle Meldungen innerhalb des Firmennetzwerks zentral sammelt und verarbeitet. Jedoch führt die digitale Transformation der Unternehmen sowie neue Technologien, wie die Netzwerkvirtualisierung und mobile Endgeräte, zu einer konstant steigenden Anzahl zu überwachender Geräte und Systeme. Dies wiederum hat ein kontinuierliches Wachstum der Datenmengen zur Folge, die das SIEM System verarbeiten muss. InnerhalbIn den letzten Jahrzehnten hat die schnelle Weiterentwicklung und Integration der Informationstechnologien alle Bereich unseres Lebens beeinflusst, nicht zuletzt auch die Geschäftswelt. Aus der zunehmenden Digitalisierung des modernen Unternehmens ergeben sich jedoch auch neue digitale Sicherheitsrisiken und kriminelle Bedrohungen. Um sich vor diesen Bedrohungen zu schützen, muss das digitale Unternehmen alle Aktivitäten innerhalb seines Firmennetzes verfolgen. Der Schlüssel zur kontinuierlichen Überwachung aller sicherheitsrelevanten Informationen ist ein sogenanntes Security Information und Event Management (SIEM) System, das alle Meldungen innerhalb des Firmennetzwerks zentral sammelt und verarbeitet. Jedoch führt die digitale Transformation der Unternehmen sowie neue Technologien, wie die Netzwerkvirtualisierung und mobile Endgeräte, zu einer konstant steigenden Anzahl zu überwachender Geräte und Systeme. Dies wiederum hat ein kontinuierliches Wachstum der Datenmengen zur Folge, die das SIEM System verarbeiten muss. Innerhalb eines möglichst kurzen Zeitraumes muss somit eine sehr große Datenmenge (Big Data) analysiert werden, um auf Bedrohungen zeitnah reagieren zu können. Eine gründliche Analyse der sicherheitsrelevanten Aspekte der aufgezeichneten Daten erfordert den Einsatz fortgeschrittener Algorithmen der Anomalieerkennung, die eine hohe Rechenkomplexität aufweisen. Existierende Methoden der Anomalieerkennung haben oftmals Geschwindigkeitsprobleme und sind deswegen nicht anwendbar für die sehr schnelle Analyse sehr großer Mengen heterogener sicherheitsrelevanter Ereignisse. Diese Arbeit schlägt eine Reihe möglicher Lösungen für die benannten Herausforderungen vor. Zunächst wird eine neuartige SIEM Architektur vorgeschlagen, die es erlaubt Ereignisse mit sehr hoher Geschwindigkeit zu verarbeiten. Das System basiert auf den Prinzipien der parallelen Programmierung, sowie der In-Memory und In-Database Datenverarbeitung. Die vorgeschlagene Architektur verwendet außerdem das effizienteste Datenformat zur Vereinheitlichung der Daten in sehr hoher Geschwindigkeit. Des Weiteren wurden im Rahmen dieser Arbeit mehrere neuartige Hochgeschwindigkeitsverfahren zur Anomalieerkennung entwickelt. Eines ist die Hybride Anomalieerkennung (Hybrid Outlier Detection), die sehr effizient auf Big Data eingesetzt werden kann. Abschließend wird eine spezifische Anomalieerkennung für Nutzerverhaltens (User Behaviour Outlier Detection) vorgeschlagen, die eine verbesserte Bedrohungsanalyse von spezifischen Verhaltensmustern der Benutzer erlaubt. Die entwickelte Systemarchitektur und die Algorithmen wurden sowohl mit Hinblick auf Geschwindigkeit, als auch Genauigkeit evaluiert und mit traditionellen Architekturen und existierenden Algorithmen verglichen. Die Evaluation wurde auf mehreren Datensätzen durchgeführt, unter anderem simulierten Daten, gut erforschten öffentlichen Datensätzen und echten Daten großer internationaler Konzerne. Die Resultate der Evaluation belegen die Geschwindigkeit und Effizienz der entwickelten Methoden. Alle Konzepte dieser Arbeit wurden in den Prototyp des SIEM Systems integriert, das in der Lage ist Big Security Data mit sehr hoher Geschwindigkeit zu analysieren. Dies zeigt das diese integrierte SIEM Plattform eine hohe praktische Relevanz für moderne Sicherheitsanwendungen besitzt.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Andrey SapeginORCiD
URN:urn:nbn:de:kobv:517-opus4-426118
DOI:https://doi.org/10.25932/publishup-42611
Title Additional (German):Sicherheitsanalyse in Hochgeschwindigkeit mithilfe der Hybride Anomalieerkennung
Advisor:Christoph Meinel, Andreas Polze
Document Type:Doctoral Thesis
Language:English
Year of first Publication:2019
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2019/03/13
Release Date:2019/03/22
Tag:Angriffserkennung; Anomalieerkennung; IDS; In-Memory; Machinelles Lernen; SIEM; Sicherheit
IDS; SIEM; anomaly detection; in-memory; intrusion detection; machine learning; novelty detection; outlier detection; security
Pagenumber:162
RVK - Regensburg Classification:ST 276
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Weitergabe zu gleichen Bedingungen 4.0 International