The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 14
Back to Result List

Molecular and pharmacological characterization of serotonin 5-HT2 alpha and 5-HT7 receptors in the salivary glands of the blowfly calliphora vicina

  • Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca2+ and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2 alpha, Cv5-ht7) that share high similarity with mammalian 5-HT2 and 5-HT7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2 alpha-transfected mammalian cells with 5-HT elevates cytosolic [Ca2+] in a dose-dependent manner (EC50 = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC50 = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT2 alpha or Cv5-HT7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations.Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca2+ and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2 alpha, Cv5-ht7) that share high similarity with mammalian 5-HT2 and 5-HT7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2 alpha-transfected mammalian cells with 5-HT elevates cytosolic [Ca2+] in a dose-dependent manner (EC50 = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC50 = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT2 alpha or Cv5-HT7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv(5)-HT2 alpha receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT7 receptor, and clozapine (1 mu M) antagonizes the effects of 5-HT via Cv5-HT7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca2+- and cAMP-signalling cascades. Citation: Roser C, Jordan N, Balfanz S, Baumann A, Walz B, et al. (2012) Molecular and Pharmacological Characterization of Serotonin 5-HT2a and 5-HT7 Receptors in the Salivary Glands of the Blowfly Calliphora vicina.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Claudia Röser, Nadine Jordan, Sabine Balfanz, Arnd Baumann, Bernd Walz, Otto BaumannORCiDGND, Wolfgang BlenauORCiDGND
DOI:https://doi.org/10.1371/journal.pone.0049459
ISSN:1932-6203
Title of parent work (English):PLoS one
Publisher:PLoS
Place of publishing:San Fransisco
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:7
Issue:11
Number of pages:13
Funding institution:German Research Foundation (DFG) [WA 463/9-6]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.