• search hit 4 of 167
Back to Result List

Association of dual-task walking performance and leg muscle quality in healthy children

  • Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44,Background Previous literature mainly introduced cognitive functions to explain performance decrements in dual-task walking, i.e., changes in dual-task locomotion are attributed to limited cognitive information processing capacities. In this study, we enlarge existing literature and investigate whether leg muscular capacity plays an additional role in children’s dual-task walking performance. Methods To this end, we had prepubescent children (mean age: 8.7 ± 0.5 years, age range: 7–9 years) walk in single task (ST) and while concurrently conducting an arithmetic subtraction task (DT). Additionally, leg lean tissue mass was assessed. Results Findings show that both, boys and girls, significantly decrease their gait velocity (f = 0.73), stride length (f = 0.62) and cadence (f = 0.68) and increase the variability thereof (f = 0.20-0.63) during DT compared to ST. Furthermore, stepwise regressions indicate that leg lean tissue mass is closely associated with step time and the variability thereof during DT (R2 = 0.44, p = 0.009). These associations between gait measures and leg lean tissue mass could not be observed for ST (R2 = 0.17, p = 0.19). Conclusion We were able to show a potential link between leg muscular capacities and DT walking performance in children. We interpret these findings as evidence that higher leg muscle mass in children may mitigate the impact of a cognitive interference task on DT walking performance by inducing enhanced gait stability.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Rainer Beurskens, Thomas MuehlbauerORCiDGND, Urs GranacherORCiDGND
DOI:https://doi.org/10.1186/s12887-015-0317-8
ISSN:1471-2431
Pubmed Id:http://www.ncbi.nlm.nih.gov/pubmed?term=25652949
Parent Title (English):BMC pediatrics
Publisher:BioMed Central
Place of publication:London
Document Type:Article
Language:English
Date of first Publication:2015/02/05
Year of Completion:2015
Release Date:2015/04/13
Tag:Body composition; Children; Cognitive interference; Gait; Muscle mass
Volume:15
Issue:2
Funder:Universität Potsdam, Publikationsfonds
Grant Number:PA 2015_02
Organizational units:Humanwissenschaftliche Fakultät / Institut für Sportwissenschaft
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer Review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publication Way:Open Access
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International
Notes extern:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Humanwissenschaftliche Reihe ; 270