The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 143
Back to Result List

Temperature variability and vertical vegetation belt shifts during the last similar to 50,000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China)

  • A 13.94-m-long sediment core, collected from a medium-sized lake in the Qilian Mountains (NE Tibetan Plateau, China), was analysed palynologically at 81 horizons. The interpretation of indicator taxa yielded various vertical shifts of the vegetation belts. These palaeovegetation results have been checked with lake surface pollen spectra from 8 takes representing different altitudinal vegetation belts. Our main findings are the following: A short period of the late Marine Isotope Stage 3 (around similar to 46,000 yr ago) was characterized by interglacial temperature conditions with a tree line above its present-day altitude. During the LGM, the vicinity of the lake was not covered by ice but by sparse alpine vegetation and alpine deserts, indicating that the climate was colder by similar to 4-7 degrees C than today Markedly higher temperatures were inferred from higher arboreal pollen frequencies between similar to 13,000 and similar to 7000 yr ago with a Holocene temperature optimum and a maximal Picea-Betula mixed-forest expansionA 13.94-m-long sediment core, collected from a medium-sized lake in the Qilian Mountains (NE Tibetan Plateau, China), was analysed palynologically at 81 horizons. The interpretation of indicator taxa yielded various vertical shifts of the vegetation belts. These palaeovegetation results have been checked with lake surface pollen spectra from 8 takes representing different altitudinal vegetation belts. Our main findings are the following: A short period of the late Marine Isotope Stage 3 (around similar to 46,000 yr ago) was characterized by interglacial temperature conditions with a tree line above its present-day altitude. During the LGM, the vicinity of the lake was not covered by ice but by sparse alpine vegetation and alpine deserts, indicating that the climate was colder by similar to 4-7 degrees C than today Markedly higher temperatures were inferred from higher arboreal pollen frequencies between similar to 13,000 and similar to 7000 yr ago with a Holocene temperature optimum and a maximal Picea-Betula mixed-forest expansion between similar to 9000 and similar to 7000 yr ago, when temperatures exceeded the present-day conditions by at least 1-2 degrees C. Alpine steppes and meadows and sub-alpine shrub vegetation dominated around the lake since the middle Holocene, suggesting that vegetation and climate conditions were exceptionally stable in comparison to previous periods.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ulrike HerzschuhORCiDGND, Harald Kürschner, Steffen MischkeORCiDGND
URL:http://www.sciencedirect.com/science/journal/00335894
DOI:https://doi.org/10.1016/j.yqres.2006.03.001
ISSN:0033-5894
Publication type:Article
Language:English
Year of first publication:2006
Publication year:2006
Release date:2017/03/24
Source:Quaternary research. - ISSN 0033-5894. - 66 (2006), 1, S. 133 - 146
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.