• search hit 1 of 0
Back to Result List

Improving the estimation of detection probability and magnitude of completeness in strongly heterogeneous media, an application to acoustic emission (AE)

  • Reliable estimations of magnitude of completeness (M-c) are essential for a correct interpretation of seismic catalogues. The spatial distribution of M-c may be strongly variable and difficult to assess in mining environments, owing to the presence of galleries, cavities, fractured regions, porous media and different mineralogical bodies, as well as in consequence of inhomogeneous spatial distribution of the seismicity. We apply a 3-D modification of the probabilistic magnitude of completeness (PMC) method, which relies on the analysis of network detection capabilities. In our approach, the probability to detect an event depends on its magnitude, source receiver Euclidian distance and source receiver direction. The suggested method is proposed for study of the spatial distribution of the magnitude of completeness in a mining environment and here is applied to a 2-months acoustic emission (AE) data set recorded at the Morsleben salt mine, Germany. The dense seismic network and the large data set, which includes more than one millionReliable estimations of magnitude of completeness (M-c) are essential for a correct interpretation of seismic catalogues. The spatial distribution of M-c may be strongly variable and difficult to assess in mining environments, owing to the presence of galleries, cavities, fractured regions, porous media and different mineralogical bodies, as well as in consequence of inhomogeneous spatial distribution of the seismicity. We apply a 3-D modification of the probabilistic magnitude of completeness (PMC) method, which relies on the analysis of network detection capabilities. In our approach, the probability to detect an event depends on its magnitude, source receiver Euclidian distance and source receiver direction. The suggested method is proposed for study of the spatial distribution of the magnitude of completeness in a mining environment and here is applied to a 2-months acoustic emission (AE) data set recorded at the Morsleben salt mine, Germany. The dense seismic network and the large data set, which includes more than one million events, enable a detailed testing of the method. This method is proposed specifically for strongly heterogeneous media. Besides, it can also be used for specific network installations, with sensors with a sensitivity, dependent on the direction of the incoming wave (e.g. some piezoelectric sensors). In absence of strong heterogeneities, the standards PMC approach should be used. We show that the PMC estimations in mines strongly depend on the source receiver direction, and cannot be correctly accounted using a standard PMC approach. However, results can be improved, when adopting the proposed 3-D modification of the PMC method. Our analysis of one central horizontal and vertical section yields a magnitude of completeness of about M-c approximate to 1 (AE magnitude) at the centre of the network, which increases up to M-c approximate to 4 at further distances outside the network; the best detection performance is estimated for a NNE-SSE elongated region, which corresponds to the strike direction of the low-attenuating salt body. Our approach provides us with small-scale details about the capability of sensors to detect an earthquake, which can be linked to the presence of heterogeneities in specific directions. Reduced detection performance in presence of strong structural heterogeneities (cavities) is confirmed by synthetic waveform modelling in heterogeneous media.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Samira Maghsoudi, Simone CescaORCiD, Sebastian HainzlORCiDGND, Diethelm Kaiser, Dirk Becker, Torsten DahmORCiDGND
DOI:https://doi.org/10.1093/gji/ggt049
ISSN:0956-540X
Title of parent work (English):Geophysical journal international
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Seismic attenuation; Statistical seismology
Volume:193
Issue:3
Number of pages:14
First page:1556
Last Page:1569
Funding institution:MINE research project; German Ministry of Education and Research (BMBF) [BMBF03G0737A]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.