The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 2
Back to Result List

The Genome of the "Great Speciator" Provides Insights into Bird Diversification

  • Among birds, white-eyes (genusZosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the 'great speciator." The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordanceAmong birds, white-eyes (genusZosterops) have diversified so extensively that Jared Diamond and Ernst Mayr referred to them as the 'great speciator." The Zosterops lineage exhibits some of the fastest rates of species diversification among vertebrates, and its members are the most prolific passerine island colonizers. We present a high-quality genome assembly for the silvereye (Zosterops lateralis), a white-eye species consisting of several subspecies distributed across multiple islands. We investigate the genetic basis of rapid diversification in white-eyes by conducting genomic analyses at varying taxonomic levels. First, we compare the silvereye genome with those of birds from different families and searched for genomic features that may be unique to Zosterops. Second, we compare the genomes of different species of white-eyes from Lifou island (South Pacific), using whole genome resequencing and restriction site associated DNA. Third, we contrast the genomes of two subspecies of silvereye that differ in plumage color. In accordance with theory, we show that white-eyes have high rates of substitutions, gene duplication, and positive selection relative to other birds. Below genus level, we find that genomic differentiation accumulates rapidly and reveals contrasting demographic histories between sympatric species on Lifou, indicative of past interspecific interactions. Finally, we highlight genes possibly involved in color polymorphism between the subspecies of silvereye. By providing the first whole-genome sequence resources for white-eyes and by conducting analyses at different taxonomic levels, we provide genomic evidence underpinning this extraordinary bird radiation.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Luca Cornetti, Luis M. Valente, Luke T. Dunning, Xueping Quan, Richard A. Black, Olivier Hebert, Vincent Savolainen
DOI:https://doi.org/10.1093/gbe/evv168
ISSN:1759-6653
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26338191
Title of parent work (English):Genome biology and evolution
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:demography; gene duplication; genome evolution; morphological divergence; phylogenomics; positive selection
Volume:7
Issue:9
Number of pages:12
First page:2680
Last Page:2691
Funding institution:European Research Council; Marie Curie Actions; Alexander von Humboldt Foundation; Royal Society (UK)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.