The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 2
Back to Result List

Antibacterial activity of products of depolymerization of chitosans with lysozyme and chitosanase against Campylobacter jejuni

  • Chitosan has several biological properties useful for the food industry, but the most attractive is its potential use as a food preservative of natural origin due to its antimicrobial activity against a wide range of food-borne microorganisms. Among food-borne pathogens, Campylobacter jejuni and related species are recognised as the most common causes of bacterial food-borne diarrhoeal disease throughout the world. Recently, it has been demonstrated that campylobacters are highly sensitive to chitosan. Even though chitosan is known to have important functional activities, poor solubility makes them difficult to use in food and biomedical applications. Unlike chitosan, the low viscosity and good solubility of chitosan oligosaccharides (COS) make them especially attractive in an important number of useful applications. In the present work, the effect of different COS on C. jejuni was investigated. Variables such as the physicochemical characteristics of chitosan and the enzyme used in COS preparation were studied. The COS had beenChitosan has several biological properties useful for the food industry, but the most attractive is its potential use as a food preservative of natural origin due to its antimicrobial activity against a wide range of food-borne microorganisms. Among food-borne pathogens, Campylobacter jejuni and related species are recognised as the most common causes of bacterial food-borne diarrhoeal disease throughout the world. Recently, it has been demonstrated that campylobacters are highly sensitive to chitosan. Even though chitosan is known to have important functional activities, poor solubility makes them difficult to use in food and biomedical applications. Unlike chitosan, the low viscosity and good solubility of chitosan oligosaccharides (COS) make them especially attractive in an important number of useful applications. In the present work, the effect of different COS on C. jejuni was investigated. Variables such as the physicochemical characteristics of chitosan and the enzyme used in COS preparation were studied. The COS had been fractioned using ultrafiltration membranes and each fraction was characterized regarding its FA and molecular weight distribution. It has been demonstrated that the biological properties of COS on Campylobacter depend on the composition of the fraction analysed. COS prepared by enzymatic hydrolysis with chitosanase were more active against Campylobacter that lysozyme-derived COS, and this behaviour seems to be related with the acetylation of the chains. On the other hand. the 10-30 kDa fraction was the most active COS fraction, independently of the enzyme used for the hydrolysis. These results have shown that COS could be useful as antimicrobial in the control of C. jejuni.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:M. Mengibar, M. Ganan, B. Miralles, A. V. Carrascosa, Adolfo J. Martinez-Rodriguez, Martin G. Peter, A. Heras
DOI:https://doi.org/10.1016/j.carbpol.2010.04.042
ISSN:0144-8617
Title of parent work (English):Carbohydrate polymers : an international journal devoted to scientific and technological aspects of industrially important polysaccharides
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Campylobacter jejuni; Chitooligosaccharides; Chitosanase; Depolymerization; Lysozyme
Volume:84
Issue:2
Number of pages:5
First page:844
Last Page:848
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.