The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 51
Back to Result List

Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution

  • Purpose: Polymer networks with adjustable properties prepared from endgroup-functionalized oligoesters by UV-crosslinking in melt have evolved into versatile multifunctional biomaterials. In addition to the molecular weight or architecture of precursors, the reaction conditions for crosslinking are pivotal for the polymer network properties. Crosslinking of precursors in solution may facilitate low-temperature processes and are compared here to networks synthesized in melt. Methods: Oligo(epsilon-caprolactone)-(z) methacrylate (oCL-(z) IEMA) precursors with a linear (z = di) or a four-armed star-shaped (z = tetra) architecture were crosslinked by radical polymerization in melt or in solution with UV irradiation. The thermal, mechanical, and swelling properties of the polymer networks obtained were characterized. Results: Crosslinking in solution resulted in materials with lower Young's moduli (E), lower maximum stress (sigma(max)), and higher elongation at break (epsilon(B)) as determined at 70 degrees C. Polymer networks from 8 kDaPurpose: Polymer networks with adjustable properties prepared from endgroup-functionalized oligoesters by UV-crosslinking in melt have evolved into versatile multifunctional biomaterials. In addition to the molecular weight or architecture of precursors, the reaction conditions for crosslinking are pivotal for the polymer network properties. Crosslinking of precursors in solution may facilitate low-temperature processes and are compared here to networks synthesized in melt. Methods: Oligo(epsilon-caprolactone)-(z) methacrylate (oCL-(z) IEMA) precursors with a linear (z = di) or a four-armed star-shaped (z = tetra) architecture were crosslinked by radical polymerization in melt or in solution with UV irradiation. The thermal, mechanical, and swelling properties of the polymer networks obtained were characterized. Results: Crosslinking in solution resulted in materials with lower Young's moduli (E), lower maximum stress (sigma(max)), and higher elongation at break (epsilon(B)) as determined at 70 degrees C. Polymer networks from 8 kDa star-shaped precursors exhibited poor elasticity when synthesized in the melt, but can be established as stretchable materials with a semi-crystalline morphology, a high gel-content, and a high elongation at break when prepared in solution. Conclusions: The crosslinking condition of methacrylate functionalized precursors significantly affected network properties. For some types of precursors such as star-shaped telechelics, synthesis in solution provided semi-crystalline elastic materials that were not accessible from crosslinking in melt.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Fabian FriessGND, Christian WischkeORCiDGND, Marc BehlORCiDGND, Andreas LendleinORCiDGND
DOI:https://doi.org/10.5301/JABFM.2012.10372
ISSN:2280-8000
Title of parent work (English):Journal of applied biomaterials & functional materials
Publisher:Wichtig
Place of publishing:Milano
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Crosslinking; Methacrylate; Multifunctional polyester networks; Poly(epsilon-caprolactone); Polymer network properties
Volume:10
Issue:3
Number of pages:7
First page:273
Last Page:279
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.