The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 12
Back to Result List

Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile

  • This work explores the control of fore-arc structure on segmentation of megathrust earthquake ruptures using coastal geomorphic markers. The Arauco-Nahuelbuta region at the south-central Chile margin constitutes an anomalous fore- arc sector in terms of topography, geology, and exhumation, located within the overlap between the Concepcion and Valdivia megathrust segments. This boundary, however, is only based on similar to 500 years of historical records. We integrate deformed marine terraces dated by cosmogenic nuclides, syntectonic sediments, published fission track data, seismic reflection profiles, and microseismicity to analyze this earthquake boundary over 10(2) -10(6) years. Rapid exhumation of Nahuelbuta's dome-like core started at 4 +/- 1.2 Ma, coeval with inversion of the adjacent Arauco basin resulting in emergence of the Arauco peninsula. Here, similarities between topography, spatiotemporal trends in fission track ages, Pliocene-Pleistocene growth strata, and folded marine terraces suggest that margin-parallel shorteningThis work explores the control of fore-arc structure on segmentation of megathrust earthquake ruptures using coastal geomorphic markers. The Arauco-Nahuelbuta region at the south-central Chile margin constitutes an anomalous fore- arc sector in terms of topography, geology, and exhumation, located within the overlap between the Concepcion and Valdivia megathrust segments. This boundary, however, is only based on similar to 500 years of historical records. We integrate deformed marine terraces dated by cosmogenic nuclides, syntectonic sediments, published fission track data, seismic reflection profiles, and microseismicity to analyze this earthquake boundary over 10(2) -10(6) years. Rapid exhumation of Nahuelbuta's dome-like core started at 4 +/- 1.2 Ma, coeval with inversion of the adjacent Arauco basin resulting in emergence of the Arauco peninsula. Here, similarities between topography, spatiotemporal trends in fission track ages, Pliocene-Pleistocene growth strata, and folded marine terraces suggest that margin-parallel shortening has dominated since Pliocene time. This shortening likely results from translation of a fore-arc sliver or microplate, decoupled from South America by an intra-arc strike-slip fault. Microplate collision against a buttress leads to localized uplift at Arauco accrued by deep-seated reverse faults, as well as incipient oroclinal bending. The extent of the Valdivia segment, which ruptured last in 1960 with an M-w 9.5 event, equals the inferred microplate. We propose that mechanical homogeneity of the fore-arc microplate delimits the Valdivia segment and that a marked discontinuity in the continental basement at Arauco acts as an inhomogeneous barrier controlling nucleation and propagation of 1960-type ruptures. As microplate-related deformation occurs since the Pliocene, we propose that this earthquake boundary and the extent of the Valdivia segment are spatially stable seismotectonic features at million year scale.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Daniel MelnickORCiDGND, Bodo BookhagenORCiDGND, Manfred StreckerORCiDGND, Helmut Peter EchtlerGND
URL:http://www.agu.org/journals/jb/
DOI:https://doi.org/10.1029/2008jb005788
ISSN:0148-0227
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Journal of geophysical research. - ISSN 0148-0227. - 114 (2009), Art. B01407
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.