The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 28
Back to Result List

Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control

  • Textbook concepts of diffusion-versus kinetic-control are well-defined for reaction-kinetics involving macroscopic concentrations of diffusive reactants that are adequately described by rate-constants—the inverse of the mean-first-passage-time to the reaction-event. In contradiction, an open important question is whether the mean-first-passage-time alone is a sufficient measure for biochemical reactions that involve nanomolar reactant concentrations. Here, using a simple yet generic, exactly solvable model we study the effect of diffusion and chemical reaction-limitations on the full reaction-time distribution. We show that it has a complex structure with four distinct regimes delineated by three characteristic time scales spanning a window of several decades. Consequently, the reaction-times are defocused: no unique time-scale characterises the reaction-process, diffusion- and kinetic-control can no longer be disentangled, and it is imperative to know the full reaction-time distribution. We introduce the concepts of geometry- andTextbook concepts of diffusion-versus kinetic-control are well-defined for reaction-kinetics involving macroscopic concentrations of diffusive reactants that are adequately described by rate-constants—the inverse of the mean-first-passage-time to the reaction-event. In contradiction, an open important question is whether the mean-first-passage-time alone is a sufficient measure for biochemical reactions that involve nanomolar reactant concentrations. Here, using a simple yet generic, exactly solvable model we study the effect of diffusion and chemical reaction-limitations on the full reaction-time distribution. We show that it has a complex structure with four distinct regimes delineated by three characteristic time scales spanning a window of several decades. Consequently, the reaction-times are defocused: no unique time-scale characterises the reaction-process, diffusion- and kinetic-control can no longer be disentangled, and it is imperative to know the full reaction-time distribution. We introduce the concepts of geometry- and reaction-control, and also quantify each regime by calculating the corresponding reaction depth.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Denis S. GrebenkovORCiD, Ralf MetzlerORCiDGND, Gleb OshaninORCiDGND
DOI:https://doi.org/10.1038/s42004-018-0096-x
ISSN:2399-3669
Title of parent work (English):Communications Chemistry
Publisher:Macmillan Publishers Limited
Place of publishing:London
Publication type:Article
Language:English
Date of first publication:2018/12/13
Publication year:2018
Release date:2019/01/15
Volume:1
Number of pages:12
Funding institution:Universität Potsdam
Funding number:PA 2018_82
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publishing method:Open Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 527
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.