The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 33
Back to Result List

Downscaling extremes an intercomparison of multiple methods for future climate

  • This study follows up on a previous downscaling intercomparison for present climate. Using a larger set of eight methods the authors downscale atmospheric fields representing present (1981-2000) and future (2046-65) conditions, as simulated by six global climate models following three emission scenarios. Local extremes were studied at 20 locations in British Columbia as measured by the same set of 27 indices, ClimDEX, as in the precursor study. Present and future simulations give 2 x 3 x 6 x 8 x 20 x 27 = 155 520 index climatologies whose analysis in terms of mean change and variation is the purpose of this study. The mean change generally reinforces what is to be expected in a warmer climate: that extreme cold events become less frequent and extreme warm events become more frequent, and that there are signs of more frequent precipitation extremes. There is considerable variation, however, about this tendency, caused by the influence of scenario, climate model, downscaling method, and location. This is analyzed using standardThis study follows up on a previous downscaling intercomparison for present climate. Using a larger set of eight methods the authors downscale atmospheric fields representing present (1981-2000) and future (2046-65) conditions, as simulated by six global climate models following three emission scenarios. Local extremes were studied at 20 locations in British Columbia as measured by the same set of 27 indices, ClimDEX, as in the precursor study. Present and future simulations give 2 x 3 x 6 x 8 x 20 x 27 = 155 520 index climatologies whose analysis in terms of mean change and variation is the purpose of this study. The mean change generally reinforces what is to be expected in a warmer climate: that extreme cold events become less frequent and extreme warm events become more frequent, and that there are signs of more frequent precipitation extremes. There is considerable variation, however, about this tendency, caused by the influence of scenario, climate model, downscaling method, and location. This is analyzed using standard statistical techniques such as analysis of variance and multidimensional scaling, along with an assessment of the influence of each modeling component on the overall variation of the simulated change. It is found that downscaling generally has the strongest influence, followed by climate model; location and scenario have only a minor influence. The influence of downscaling could be traced back in part to various issues related to the methods, such as the quality of simulated variability or the dependence on predictors. Using only methods validated in the precursor study considerably reduced the influence of downscaling, underpinning the general need for method verification.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gerd BürgerORCiDGND, S. R. Sobie, A. J. Cannon, A. T. Werner, T. Q. Murdock
DOI:https://doi.org/10.1175/JCLI-D-12-00249.1
ISSN:0894-8755
Title of parent work (English):Journal of climate
Publisher:American Meteorological Soc.
Place of publishing:Boston
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Volume:26
Issue:10
Number of pages:21
First page:3429
Last Page:3449
Funding institution:BC Ministry of Forests and Range; BC ministry of Environment and from the University of Victoria
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie und Geoökologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.