• search hit 3 of 3
Back to Result List

Moment release in the Lower Rhine Embayment, Germany : seismological perspective of the deformation process

  • An important task of seismic hazard assessment consists of estimating the rate of seismic moment release which is correlated to the rate of tectonic deformation and the seismic coupling. However, the estimations of deformation depend on the type of information utilized (e.g. geodetic, geological, seismic) and include large uncertainties. We therefore estimate the deformation rate in the Lower Rhine Embayment (LRE), Germany, using an integrated approach where the uncertainties have been systematically incorporated. On the basis of a new homogeneous earthquake catalogue we initially determine the frequency-magnitude distribution by statistical methods. In particular, we focus on an adequate estimation of the upper bound of the Gutenberg-Richter relation and demonstrate the importance of additional palaeoseis- mological information. The integration of seismological and geological information yields a probability distribution of the upper bound magnitude. Using this distribution together with the distribution of Gutenberg-Richter a and bAn important task of seismic hazard assessment consists of estimating the rate of seismic moment release which is correlated to the rate of tectonic deformation and the seismic coupling. However, the estimations of deformation depend on the type of information utilized (e.g. geodetic, geological, seismic) and include large uncertainties. We therefore estimate the deformation rate in the Lower Rhine Embayment (LRE), Germany, using an integrated approach where the uncertainties have been systematically incorporated. On the basis of a new homogeneous earthquake catalogue we initially determine the frequency-magnitude distribution by statistical methods. In particular, we focus on an adequate estimation of the upper bound of the Gutenberg-Richter relation and demonstrate the importance of additional palaeoseis- mological information. The integration of seismological and geological information yields a probability distribution of the upper bound magnitude. Using this distribution together with the distribution of Gutenberg-Richter a and b values, we perform Monte Carlo simulations to derive the seismic moment release as a function of the observation time. The seismic moment release estimated from synthetic earthquake catalogues with short catalogue length is found to systematically underestimate the long-term moment rate which can be analytically determined. The moment release recorded in the LRE over the last 250 yr is found to be in good agreement with the probability distribution resulting from the Monte Carlo simulations. Furthermore, the long-term distribution is within its uncertainties consistent with the moment rate derived by geological measurements, indicating an almost complete seismic coupling in this region. By means of Kostrov's formula, we additionally calculate the full deformation rate tensor using the distribution of known focal mechanisms in LRE. Finally, we use the same approach to calculate the seismic moment and the deformation rate for two subsets of the catalogue corresponding to the east- and west-dipping faults, respectivelyshow moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:J. Schmedes, Sebastian Hainzl, S. K. Reamer, Frank Scherbaum, K. G. Hinzen
ISSN:0956-540X
Document Type:Article
Language:English
Year of first Publication:2005
Year of Completion:2005
Release Date:2017/03/24
Source:Geophysical Journal International. - ISSN 0956-540X. - 160 (2005), 3, S. 901 - 909
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer Review:Referiert