• search hit 6 of 7
Back to Result List

MocA is a specific cytidylyltransferase involved in molybdopterin cytosine dinucleotide biosynthesis in Escherichia coli

  • We have purified and characterized a specific CTP: molybdopterin cytidylyltransferase for the biosynthesis of the molybdopterin (MPT) cytosine dinucleotide (MCD) cofactor in Escherichia coli. The protein, named MocA, shows 22% amino acid sequence identity to E. coli MobA, the specific GTP: molybdopterin guanylyltransferase for molybdopterin guanine dinucleotide biosynthesis. MocA is essential for the activity of the MCD-containing enzymes aldehyde oxidoreductase Yag-TSR and the xanthine dehydrogenases XdhABC and XdhD. Using a fully defined in vitro assay, we showed that MocA, Mo-MPT, CTP, and MgCl2 are required and sufficient for MCD biosynthesis in vitro. The activity of MocA is specific for CTP; other nucleotides such as ATP and GTP were not utilized. In the defined in vitro system a turnover number of 0.37 +/- 0.01 min(-1) was obtained. A1:1 binding ratio of MocA to Mo-MPT and CTP was determined to monomeric MocA with dissociation constants of 0.23 +/- 0.02 mu M for CTP and 1.17 +/- 0.18 mu M for Mo-MPT. We showed that MocA wasWe have purified and characterized a specific CTP: molybdopterin cytidylyltransferase for the biosynthesis of the molybdopterin (MPT) cytosine dinucleotide (MCD) cofactor in Escherichia coli. The protein, named MocA, shows 22% amino acid sequence identity to E. coli MobA, the specific GTP: molybdopterin guanylyltransferase for molybdopterin guanine dinucleotide biosynthesis. MocA is essential for the activity of the MCD-containing enzymes aldehyde oxidoreductase Yag-TSR and the xanthine dehydrogenases XdhABC and XdhD. Using a fully defined in vitro assay, we showed that MocA, Mo-MPT, CTP, and MgCl2 are required and sufficient for MCD biosynthesis in vitro. The activity of MocA is specific for CTP; other nucleotides such as ATP and GTP were not utilized. In the defined in vitro system a turnover number of 0.37 +/- 0.01 min(-1) was obtained. A1:1 binding ratio of MocA to Mo-MPT and CTP was determined to monomeric MocA with dissociation constants of 0.23 +/- 0.02 mu M for CTP and 1.17 +/- 0.18 mu M for Mo-MPT. We showed that MocA was also able to convert MPT to MCD in the absence of molybdate, however, with only one catalytic turnover. The addition of molybdate after one turnover gave rise to a higher MCD production, revealing that MCD remains bound to MocA in the absence of molybdate. This work presents the first characterization of a specific enzyme involved in MCD biosynthesis in bacteria.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Meina Neumann, Gerd Mittelstaedt, Farida Seduk, Chantal Iobbi-Nivol, Silke Leimkuehler
URL:http://www.jbc.org/
DOI:https://doi.org/10.1074/jbc.M109.008565
ISSN:0021-9258
Document Type:Article
Language:English
Year of first Publication:2009
Year of Completion:2009
Release Date:2017/03/25
Source:Journal of biological chemistry. - ISSN 0021-9258. - 284 (2009), 33, S. 21891 - 21898
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert