• search hit 3 of 13
Back to Result List

Structure and quantum-size effects in a surface carbide : W(110)/C-R(15 X 3)

  • Results of the combined investigation of atomic and electronic structure of the W(110)/C-R(15x3) surface carbide are reported. A variety of experimental techniques has been involved such as scanning tunneling microscopy (STM), low-energy electron diffraction, x-ray photoelectron spectroscopy, and angle-resolved photoemission (ARPES). Distance-dependent STM measurements show a nontrivial geometrical behavior in the topography data, demonstrating five different patterns representing the superstructure at different values of the tip-surface separation. Atomic resolution was achieved at lower tunneling gap resistance. An unexpected spatial asymmetry in the distribution of the local density of states across the surface unit cell has been observed as well. Photoelectron spectroscopy of C1s and W4f core levels clarifies the nature of the chemical bonding in the system. The band mapping with ARPES provides information on the wave- vector dependence of the electronic states. Notable quantum size and superlattice effects were discovered in theResults of the combined investigation of atomic and electronic structure of the W(110)/C-R(15x3) surface carbide are reported. A variety of experimental techniques has been involved such as scanning tunneling microscopy (STM), low-energy electron diffraction, x-ray photoelectron spectroscopy, and angle-resolved photoemission (ARPES). Distance-dependent STM measurements show a nontrivial geometrical behavior in the topography data, demonstrating five different patterns representing the superstructure at different values of the tip-surface separation. Atomic resolution was achieved at lower tunneling gap resistance. An unexpected spatial asymmetry in the distribution of the local density of states across the surface unit cell has been observed as well. Photoelectron spectroscopy of C1s and W4f core levels clarifies the nature of the chemical bonding in the system. The band mapping with ARPES provides information on the wave- vector dependence of the electronic states. Notable quantum size and superlattice effects were discovered in the dispersion of the valence-band states. The experimental data suggests an apparent one-dimensional character of the electronic structure. Lateral quantization and umklapp scattering are proposed as explanation. Finally, based on photoemission and STM measurements, an improved crystallographic model of the tungsten surface carbide is introducedshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andrei VarykhalovORCiDGND, Oliver RaderORCiDGND, Wolfgang Gudat
ISSN:1098-0121
Publication type:Article
Language:English
Year of first publication:2005
Publication year:2005
Release date:2017/03/24
Source:Physical Review B. - ISSN 1098-0121. - 72 (2005), 11, S. 10
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.