The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 141
Back to Result List

Hyperconjugation and the increasing bulk of OCOCX3 substituents in trans-1,4-disubstituted cyclohexanes destabilize the diequatorial conformer

  • The trans diesters of 1,4-cyclohexanediol with a number of acetic acid analogues, CX3COOH, of varying steric hindrance and polarity (CX3 = Me, Et, iso-Pr, tert-Bu, CF3, CH2Cl, CHCl2, CCl3, CH2Br, CHBr2, CBr3) were synthesized, and the axial, axial/equatorial, equatorial conformational equilibria were studied by low-temperature H-1 NMR spectroscopy in CD2Cl2. The structures and relative energies of the axial, axial and equatorial, equatorial conformers were calculated at both the MP2/6-311G* and the MP2/6-311+G* levels of theory, and it was only by including diffuse functions that a good correlation of Delta G degrees(calcd) vs Delta G(exptl) could be obtained. Both the structures and the energy differences of the axial, axial and equatorial, equatorial conformers are discussed with respect to the established models of conformational analysis, viz., steric 1,3-diaxial and hyperconjugative interactions. Interestingly, the hyperconjugative interactions sigma(C-C)/sigma(C-H)->sigma*(C-O), together with a steric effect which alsoThe trans diesters of 1,4-cyclohexanediol with a number of acetic acid analogues, CX3COOH, of varying steric hindrance and polarity (CX3 = Me, Et, iso-Pr, tert-Bu, CF3, CH2Cl, CHCl2, CCl3, CH2Br, CHBr2, CBr3) were synthesized, and the axial, axial/equatorial, equatorial conformational equilibria were studied by low-temperature H-1 NMR spectroscopy in CD2Cl2. The structures and relative energies of the axial, axial and equatorial, equatorial conformers were calculated at both the MP2/6-311G* and the MP2/6-311+G* levels of theory, and it was only by including diffuse functions that a good correlation of Delta G degrees(calcd) vs Delta G(exptl) could be obtained. Both the structures and the energy differences of the axial, axial and equatorial, equatorial conformers are discussed with respect to the established models of conformational analysis, viz., steric 1,3-diaxial and hyperconjugative interactions. Interestingly, the hyperconjugative interactions sigma(C-C)/sigma(C-H)->sigma*(C-O), together with a steric effect which also destabilizes the equatorial, equatorial conformers on increasing bulk of the substituents, proved to dominate the position of the conformational equilibria. In addition, the preference of the axial, axial conformers with respect to their equatorial, equatorial analogues was greater than expected from the conformational energies of the corresponding substituents in the monosubstituted cyclohexyl esters. The reason for this very interesting and unexpected result is also discussedshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Erich KleinpeterORCiDGND, Nadja Rolla, Andreas KochORCiDGND, Fernando Taddei
URL:http://pubs.acs.org/journal/joceah
DOI:https://doi.org/10.1021/Jo0600858
ISSN:4393-4399
Publication type:Article
Language:English
Year of first publication:2006
Publication year:2006
Release date:2017/03/24
Source:Journal of organic chemistry. - ISSN 4393-4399. - 71 (2006), 12, S. 4393 - 4399
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.