The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 30
Back to Result List

Connectivity of overland flow by drainage network expansion in a rain forest catchment

  • Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchmentSoils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Beate Zimmermann, Alexander Zimmermann, Benjamin L. Turner, Till FranckeORCiDGND, Helmut ElsenbeerORCiD
DOI:https://doi.org/10.1002/2012WR012660
ISSN:0043-1397
ISSN:1944-7973
Title of parent work (English):Water resources research
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Tag:connectivity; drainage network expansion; overland flow; phosphorus; stormflow; suspended sediment
Volume:50
Issue:2
Number of pages:17
First page:1457
Last Page:1473
Funding institution:German Research Foundation [El 255/6-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.