• search hit 5 of 7
Back to Result List

Phase diagrams of DNA-photosensitive surfactant complexes: Effect of ionic strength and surfactant structure

  • Realization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at chargeRealization of all-optically controlled and efficient DNA compaction is the major motivation in the study of interactions between DNA and photosensitive surfactants. In this article, using recently published approach of phase diagram construction [Y. Zakrevskyy, P. Cywinski, M. Cywinska, J. Paasche, N. Lomadze, O. Reich, H.-G. Lohmannsroben, and S. Santer, J. Chem. Phys. 140, 044907 (2014)], a strategy for substantial reduction of compaction agent concentration and simultaneous maintaining the light-induced decompaction efficiency is proposed. The role of ionic strength (NaCl concentration), as a very important environmental parameter, and surfactant structure (spacer length) on the changes of positions of phase transitions is investigated. Increase of ionic strength leads to increase of the surfactant concentration needed to compact DNA molecule. However, elongation of the spacer results to substantial reduction of this concentration. DNA compaction by surfactants with longer tails starts to take place in diluted solutions at charge ratios Z < 1 and is driven by azobenzene-aggregation compaction mechanism, which is responsible for efficient decompaction. Comparison of phase diagrams for different DNA-photosensitive surfactant systems allowed explanation and proposal of a strategy to overcome previously reported limitations of the light-induced decompaction for complexes with increasing surfactant hydrophobicity. (C) 2014 AIP Publishing LLC.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Yuriy Zakrevskyy, Evgenii TitovORCiDGND, Nino Lomadze, Svetlana SanterORCiDGND
DOI:https://doi.org/10.1063/1.4899281
ISSN:0021-9606
ISSN:1089-7690
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25362338
Title of parent work (English):The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:141
Issue:16
Number of pages:8
Funding institution:German Academic Exchange Service (G-RISC program)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.