The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 3
Back to Result List

Comparison of deterministic and stochastic earthquake simulators for fault interactions in the Lower Rhine Embayment, Germany

  • Time-dependent probabilistic seismic hazard assessment requires a stochastic description of earthquake occurrences. While short-term seismicity models are well-constrained by observations, the recurrences of characteristic on-fault earthquakes are only derived from theoretical considerations, uncertain palaeo-events or proxy data. Despite the involved uncertainties and complexity, simple statistical models for a quasi-period recurrence of on-fault events are implemented in seismic hazard assessments. To test the applicability of statistical models, such as the Brownian relaxation oscillator or the stress release model, we perform a systematic comparison with deterministic simulations based on rate- and state-dependent friction, high-resolution representations of fault systems and quasi-dynamic rupture propagation. For the specific fault network of the Lower Rhine Embayment, Germany, we run both stochastic and deterministic model simulations based on the same fault geometries and stress interactions. Our results indicate that theTime-dependent probabilistic seismic hazard assessment requires a stochastic description of earthquake occurrences. While short-term seismicity models are well-constrained by observations, the recurrences of characteristic on-fault earthquakes are only derived from theoretical considerations, uncertain palaeo-events or proxy data. Despite the involved uncertainties and complexity, simple statistical models for a quasi-period recurrence of on-fault events are implemented in seismic hazard assessments. To test the applicability of statistical models, such as the Brownian relaxation oscillator or the stress release model, we perform a systematic comparison with deterministic simulations based on rate- and state-dependent friction, high-resolution representations of fault systems and quasi-dynamic rupture propagation. For the specific fault network of the Lower Rhine Embayment, Germany, we run both stochastic and deterministic model simulations based on the same fault geometries and stress interactions. Our results indicate that the stochastic simulators are able to reproduce the first-order characteristics of the major earthquakes on isolated faults as well as for coupled faults with moderate stress interactions. However, we find that all tested statistical models fail to reproduce the characteristics of strongly coupled faults, because multisegment rupturing resulting from a spatiotemporally correlated stress field is underestimated in the stochastic simulators. Our results suggest that stochastic models have to be extended by multirupture probability distributions to provide more reliable results.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sebastian HainzlORCiDGND, Gert ZöllerORCiDGND, Gilbert B. Brietzke, Klaus-G. Hinzen
DOI:https://doi.org/10.1093/gji/ggt271
ISSN:0956-540X
ISSN:1365-246X
Title of parent work (English):Geophysical journal international
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Earthquake interaction; Seismicity and tectonics; Statistical seismology; and prediction; forecasting
Volume:195
Issue:1
Number of pages:11
First page:684
Last Page:694
Funding institution:DFG-project Virtual Lower Rhine Embayment [HA4789/2-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.