• search hit 3 of 74
Back to Result List

Enhanced Polarization in Melt-quenched and Stretched Poly(vinylidene Fluoride-Hexafluoropropylene) Films

  • beta-phase poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymer films were prepared by uniaxially stretching solution-cast or melt-quenched samples. Different preparation routes lead to different amounts of the crystalline alpha and beta phases in the films, as detected by means of Fourier-transform infrared spectroscopy and X-ray diffractometry. The beta phase is significantly enhanced in melt-quenched and stretched films in comparison to solution-cast and stretched films. This is particularly true for copolymer samples with higher HFP content. The beta- phase enhancement is also observed in ferroelectric-hysteresis experiments where a rather high polarization of 58 mC/ m(2) was found on melt-quenched and stretched samples after poling at electric fields of 140 MV/m. After poling at 160 MV/m, one of these samples exhibited a piezoelectric d(33) coefficient as high as 21 pC/N. An electric-field-induced partial transition from the alpha to the beta phase was also observed on the melt-quenched and stretched samples. Thisbeta-phase poly(vinylidene fluoride-hexafluoropropylene) (P(VDF-HFP)) copolymer films were prepared by uniaxially stretching solution-cast or melt-quenched samples. Different preparation routes lead to different amounts of the crystalline alpha and beta phases in the films, as detected by means of Fourier-transform infrared spectroscopy and X-ray diffractometry. The beta phase is significantly enhanced in melt-quenched and stretched films in comparison to solution-cast and stretched films. This is particularly true for copolymer samples with higher HFP content. The beta- phase enhancement is also observed in ferroelectric-hysteresis experiments where a rather high polarization of 58 mC/ m(2) was found on melt-quenched and stretched samples after poling at electric fields of 140 MV/m. After poling at 160 MV/m, one of these samples exhibited a piezoelectric d(33) coefficient as high as 21 pC/N. An electric-field-induced partial transition from the alpha to the beta phase was also observed on the melt-quenched and stretched samples. This effect leads to a further increase in the applications-relevant dipole polarization. Uniaxially stretched ferroelectric- polymer films are highly anisotropic. Dielectric resonance spectroscopy reveals a strong increase of the transverse piezoelectric d(32) coefficient and a strong decrease of the transverse elastic modulus c(32) upon heating from 20 to 50 degrees C.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Feipeng WangORCiD, Peter FrübingORCiD, Werner WirgesORCiD, Reimund GerhardORCiDGND, Michael WegenerORCiDGND
URL:http://ieeexplore.ieee.org/servlet/opac?punumber=94
DOI:https://doi.org/10.1109/TDEI.2010.5539679
ISSN:1070-9878
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:IEEE Transactions on Dielectrics and Electrical Insulation. - ISSN 1070-9878. - 17 (2010), 4, S. 1088 - 1095
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.