• search hit 4 of 9
Back to Result List

Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation

  • Protein metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able toProtein metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Clemens Nikolaus Zeno SchmittORCiDGND, Alette Winter, Luca Bertinetti, Admir Masic, Peter StrauchGND, Matthew J. Harrington
DOI:https://doi.org/10.1098/rsif.2015.0466
ISSN:1742-5689
ISSN:1742-5662
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26311314
Title of parent work (English):Interface : journal of the Royal Society
Publisher:Royal Society
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:DOPA; coating; metal coordination; mussel byssus
Volume:12
Issue:110
Number of pages:8
Funding institution:German Research Foundation (DFG Priority Programme) [1568 HA6369/1-1]; Max Planck Society
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.