The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 51
Back to Result List

Risk estimation for future glacier lake outburst floods based on local land-use changes

  • Effects of climate change are particularly strong in high-mountain regions. Most visibly, glaciers are shrinking at a rapid pace, and as a consequence, glacier lakes are forming or growing. At the same time the stability of mountain slopes is reduced by glacier retreat, permafrost thaw and other factors, resulting in an increasing landslide hazard which can potentially impact lakes and therewith trigger far-reaching and devastating outburst floods. To manage risks from existing or future lakes, strategies need to be developed to plan in time for adequate risk reduction measures at a local level. However, methods to assess risks from future lake outbursts are not available and need to be developed to evaluate both future hazard and future damage potential. Here a method is presented to estimate future risks related to glacier lake outbursts for a local site in southern Switzerland (Naters, Valais). To generate two hazard scenarios, glacier shrinkage and lake formation modelling was applied, combined with simple flood modelling andEffects of climate change are particularly strong in high-mountain regions. Most visibly, glaciers are shrinking at a rapid pace, and as a consequence, glacier lakes are forming or growing. At the same time the stability of mountain slopes is reduced by glacier retreat, permafrost thaw and other factors, resulting in an increasing landslide hazard which can potentially impact lakes and therewith trigger far-reaching and devastating outburst floods. To manage risks from existing or future lakes, strategies need to be developed to plan in time for adequate risk reduction measures at a local level. However, methods to assess risks from future lake outbursts are not available and need to be developed to evaluate both future hazard and future damage potential. Here a method is presented to estimate future risks related to glacier lake outbursts for a local site in southern Switzerland (Naters, Valais). To generate two hazard scenarios, glacier shrinkage and lake formation modelling was applied, combined with simple flood modelling and field work. Furthermore, a land-use model was developed to quantify and allocate land-use changes based on local-to-regional storylines and three scenarios of land-use driving forces. Results are conceptualized in a matrix of three land-use and two hazard scenarios for the year 2045, and show the distribution of risk in the community of Naters, including high and very high risk areas. The study underlines the importance of combined risk management strategies focusing on land-use planning, on vulnerability reduction, as well as on structural measures (where necessary) to effectively reduce future risks related to lake outburst floods.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:S. Nussbaumer, Y. Schaub, C. Huggel, Ariane WalzORCiDGND
DOI:https://doi.org/10.5194/nhess-14-1611-2014
ISSN:1561-8633
Title of parent work (English):Natural hazards and earth system sciences
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:14
Issue:6
Number of pages:14
First page:1611
Last Page:1624
Funding institution:New Lakes (NELAK) [406140_125997]; Swiss National Science Foundation; UNISCIENTIA STIFTUNG
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.