• search hit 1 of 1
Back to Result List

Airborne electromagnetic modelling options and their consequences in target definition

  • Given the range of geological conditions under which airborne EM surveys are conducted, there is an expectation that the 2D and 3D methods used to extract models that are geologically meaningful would be favoured over ID inversion and transforms. We do after all deal with an Earth that constantly undergoes, faulting, intrusions, and erosive processes that yield a subsurface morphology, which is, for most parts, dissimilar to a horizontal layered earth. We analyse data from a survey collected in the Musgrave province, South Australia. It is of particular interest since it has been used for mineral prospecting and for a regional hydro-geological assessment. The survey comprises abrupt lateral variations, more-subtle lateral continuous sedimentary sequences and filled palaeovalleys. As consequence, we deal with several geophysical targets of contrasting conductivities, varying geometries and at different depths. We invert the observations by using several algorithms characterised by the different dimensionality of the forward operator.Given the range of geological conditions under which airborne EM surveys are conducted, there is an expectation that the 2D and 3D methods used to extract models that are geologically meaningful would be favoured over ID inversion and transforms. We do after all deal with an Earth that constantly undergoes, faulting, intrusions, and erosive processes that yield a subsurface morphology, which is, for most parts, dissimilar to a horizontal layered earth. We analyse data from a survey collected in the Musgrave province, South Australia. It is of particular interest since it has been used for mineral prospecting and for a regional hydro-geological assessment. The survey comprises abrupt lateral variations, more-subtle lateral continuous sedimentary sequences and filled palaeovalleys. As consequence, we deal with several geophysical targets of contrasting conductivities, varying geometries and at different depths. We invert the observations by using several algorithms characterised by the different dimensionality of the forward operator. Inversion of airborne EM data is known to be an ill-posed problem. We can generate a variety of models that numerically adequately fit the measured data, which makes the solution non-unique. The application of different deterministic inversion codes or transforms to the same dataset can give dissimilar results, as shown in this paper. This ambiguity suggests the choice of processes and algorithms used to interpret AEM data cannot be resolved as a matter of personal choice and preference. The degree to which models generated by a ID algorithm replicate/or not measured data, can be an indicator of the data's dimensionality, which perse does not imply that data that can be fitted with a 1D model cannot be multidimensional. On the other hand, it is crucial that codes that can generate 2D and 3D models do reproduce the measured data in order for them to be considered as a plausible solution. In the absence of ancillary information, it could be argued that the simplest model with the simplest physics might be preferred.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alan Yusen Ley-Cooper, Andrea Viezzoli, Julien GuillemoteauORCiD, Giulio Vignoli, James Macnae, Leif Cox, Tim Munday
DOI:https://doi.org/10.1071/EG14045
ISSN:0812-3985
ISSN:1834-7533
Title of parent work (English):Exploration geophysics : the bulletin of the Australian Society of Exploration Geophysicists
Publisher:CSIRO
Place of publishing:Clayton
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:airborne; electromagnetics; exploration; inversion; target
Volume:46
Issue:1
Number of pages:11
First page:74
Last Page:84
Funding institution:Techno Imaging; Aarhus Geophysics; RMIT; University of Potsdam; Geological Survey of Denmark Greenland; Goyder FLOWS Project through the SA Goyder Institute; Water for a Healthy Country and Mineral Resources Flagship
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.