The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 6
Back to Result List

Fibrillar gels via the self-assembly of poly(L-glutamate)-based statistical copolymers

  • Polypeptides having secondary structures often undergo self-assembly which can extend over multiple length scales. Poly(gamma-benzyl-L-glutamate) (PBLG), for example, folds into a-helices and forms physical organogels, whereas poly(L-glutamic acid) (PLGA at acidic pH) or poly(L-glutamate) (PLG at neutral/basic pH) do not form hydrogels. We explored the gelation of modified PBLG and investigated the deprotection of the carboxylic acid moieties in such gels to yield unique hydrogels. This was accomplished through photo-crosslinking gelation of poly(gamma-benzyl-L-glutamate-co-allylglycine) statistical copolymers in toluene, tetrahydrofuran, and 1,4-dioxane. Unlike most polymer-based chemical gels, our gels were prepared from dilute solutions (<20 g L-1, i.e., <2% w/v) of low molar mass polymers. Despite such low concentrations and molar masses, our dioxane gels showed high mechanical stability and little shrinkage; remarkably, they also exhibited a porous fibrillar network. Deprotection of the carboxylic acid moieties in dioxane gelsPolypeptides having secondary structures often undergo self-assembly which can extend over multiple length scales. Poly(gamma-benzyl-L-glutamate) (PBLG), for example, folds into a-helices and forms physical organogels, whereas poly(L-glutamic acid) (PLGA at acidic pH) or poly(L-glutamate) (PLG at neutral/basic pH) do not form hydrogels. We explored the gelation of modified PBLG and investigated the deprotection of the carboxylic acid moieties in such gels to yield unique hydrogels. This was accomplished through photo-crosslinking gelation of poly(gamma-benzyl-L-glutamate-co-allylglycine) statistical copolymers in toluene, tetrahydrofuran, and 1,4-dioxane. Unlike most polymer-based chemical gels, our gels were prepared from dilute solutions (<20 g L-1, i.e., <2% w/v) of low molar mass polymers. Despite such low concentrations and molar masses, our dioxane gels showed high mechanical stability and little shrinkage; remarkably, they also exhibited a porous fibrillar network. Deprotection of the carboxylic acid moieties in dioxane gels yielded pH responsive and highly absorbent PLGA/PLG-based hydrogels (swelling ratio of up to 87), while preserving the network structure, which is an unprecedented feature in the context of crosslinked PLGA gels. These outstanding properties are highly attractive for biomedical materials.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Charlotte D. VacogneORCiDGND, Sarah M. Brosnan, Admir Masic, Helmut SchlaadORCiDGND
DOI:https://doi.org/10.1039/c5py00491h
ISSN:1759-9954
ISSN:1759-9962
Title of parent work (English):Polymer Chemistry
Publisher:Royal Society of Chemistry
Place of publishing:Cambridge
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:6
Issue:28
Number of pages:13
First page:5040
Last Page:5052
Funding institution:International Max Planck Research School (IMPRS) on "Multiscale Biosystems"
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.