• search hit 3 of 3
Back to Result List

Heterolithic azobenzene-containing supermolecular tripedal liquid crystals self-organizing into highly segregated bilayered smectic phases

  • Synthesis, self-organization, and optical properties of supermolecular tripedal liquid crystals incorporating various prototypical mesogenic units such as alkoxy-azobenzene (AZB), alkoxy-biphenylene (BPH) or alkoxy-cyanobiphenyl (OCB) derivatives are reported. Different molecular systems were designed in order to sequentially incorporate the smectogenic-like alkoxy-azobenzene-based chromophore within the molecular structure, whose relative proportion is selectively varied by exchanging with the other mesogens. A divergent synthetic mode was elaborated for their synthesis, starting from the regioselective functionalization of the phloroglucinol-based (PG) inner core. This methodology allowed the preparation of several sets of unconventional tripedal oligomers with conjugated heterolithic structures (made of different blocks, e.g. PG(6)AZB(x)BPH(3-x) and PG(6)AZB(x)OCB(3-x), x = 1 or 2) along the homolithic parents (all identical blocks, e.g. PG(z)AZB(3), z = 6 or 11, z is the number of methylene in the spacer between PG and theSynthesis, self-organization, and optical properties of supermolecular tripedal liquid crystals incorporating various prototypical mesogenic units such as alkoxy-azobenzene (AZB), alkoxy-biphenylene (BPH) or alkoxy-cyanobiphenyl (OCB) derivatives are reported. Different molecular systems were designed in order to sequentially incorporate the smectogenic-like alkoxy-azobenzene-based chromophore within the molecular structure, whose relative proportion is selectively varied by exchanging with the other mesogens. A divergent synthetic mode was elaborated for their synthesis, starting from the regioselective functionalization of the phloroglucinol-based (PG) inner core. This methodology allowed the preparation of several sets of unconventional tripedal oligomers with conjugated heterolithic structures (made of different blocks, e.g. PG(6)AZB(x)BPH(3-x) and PG(6)AZB(x)OCB(3-x), x = 1 or 2) along the homolithic parents (all identical blocks, e.g. PG(z)AZB(3), z = 6 or 11, z is the number of methylene in the spacer between PG and the protomesogen, PG(6)BPH(3), and PG(6)OCB(3)), respectively. Essentially all the synthesized systems behave as thermotropic liquid crystals and show various types of highly segregated multilayered smectic phases, or, in one case, a nematic phase, depending on the nature of the constitutive anisotropic blocks and on the molecular topology (homolithic versus heterolithic, mesogenic ratio x : 3 - x). The effects of these structural modifications on the mesomorphism (mesophase structures, temperature ranges, and thermodynamic stability) have been investigated by differential scanning calorimetry and small-angle X-ray diffraction experiments combined with dilatometric measurements. Models describing the various supramolecular organizations of these tripedes into such multilayered structures are proposed and discussed. Preliminary results of the investigations of their optical properties will also be presented.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Zsuzsanna T. Nagy, Benoit Heinrich, Daniel Guillon, Jaroslaw Tomczyk, Joachim Stumpe, Bertrand Donnio
DOI:https://doi.org/10.1039/c2jm33751g
ISSN:0959-9428
Title of parent work (English):Journal of materials chemistry
Publisher:Royal Society of Chemistry
Place of publishing:Cambridge
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:22
Issue:35
Number of pages:9
First page:18614
Last Page:18622
Funding institution:EU "DENDREAMERS" ITN project (7th FP-THE PEOPLE PROGRAMME; The Marie Curie Actions-ITN [215884-2]; CNRS
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.