• search hit 1 of 2
Back to Result List

Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe

  • Information on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models, they cannot be directly used in hydrological models. Hence, statistical downscaling is necessary to address climate change impacts at the catchment scale. This study compares eight statistical downscaling methods (SDMs) often used in climate change impact studies. Four methods are based on change factors (CFs), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation in most catchments in both winter and summer. For individual catchments, the downscaled time series tend to agree on the direction of theInformation on extreme precipitation for future climate is needed to assess the changes in the frequency and intensity of flooding. The primary source of information in climate change impact studies is climate model projections. However, due to the coarse resolution and biases of these models, they cannot be directly used in hydrological models. Hence, statistical downscaling is necessary to address climate change impacts at the catchment scale. This study compares eight statistical downscaling methods (SDMs) often used in climate change impact studies. Four methods are based on change factors (CFs), three are bias correction (BC) methods, and one is a perfect prognosis method. The eight methods are used to downscale precipitation output from 15 regional climate models (RCMs) from the ENSEMBLES project for 11 catchments in Europe. The overall results point to an increase in extreme precipitation in most catchments in both winter and summer. For individual catchments, the downscaled time series tend to agree on the direction of the change but differ in the magnitude. Differences between the SDMs vary between the catchments and depend on the season analysed. Similarly, general conclusions cannot be drawn regarding the differences between CFs and BC methods. The performance of the BC methods during the control period also depends on the catchment, but in most cases they represent an improvement compared to RCM outputs. Analysis of the variance in the ensemble of RCMs and SDMs indicates that at least 30% and up to approximately half of the total variance is derived from the SDMs. This study illustrates the large variability in the expected changes in extreme precipitation and highlights the need for considering an ensemble of both SDMs and climate models. Recommendations are provided for the selection of the most suitable SDMs to include in the analysis.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:M. A. Sunyer, Y. Hundecha, D. Lawrence, H. Madsen, Patrick WillemsORCiDGND, M. Martinkova, Klaus Vormoor, Gerd BürgerORCiDGND, M. Hanel, J. Kriauciuniene, A. Loukas, M. Osuch, I. Yucel
DOI:https://doi.org/10.5194/hess-19-1827-2015
ISSN:1027-5606 (print)
ISSN:1607-7938 (online)
Parent Title (English):Hydrology and earth system sciences : HESS
Publisher:Copernicus
Place of publication:Göttingen
Document Type:Article
Language:English
Year of first Publication:2015
Year of Completion:2015
Release Date:2017/03/27
Volume:19
Issue:4
Pagenumber:21
First Page:1827
Last Page:1847
Funder:Danish Council for Strategic Research as part of the project RiskChange; NVE for the internal research project Climate change and future floods; research project for the Fund for Scientific Research (F.W.O.) - Flanders, Flanders Hydraulics Research; Flemish Environment Agency; Helmoltz graduate research school GeoSim; Internal Grant Agency of the Faculty of Environmental Sciences, CULS Prague [00000869/2013]; Austrian Climate and Energy Fund as part of the Austrian Climate Research Programme; TUBITAK project [110Y036]; EU [05539]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Peer Review:Referiert
Publication Way:Open Access
Notes extern:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 512