• search hit 5 of 0
Back to Result List

Deep-seated gravitational slope deformation (DSGSD) and slow-moving landslides in the southern Tien Shan Mountains: new insights from InSAR, tectonic and geomorphic analysis

  • We investigated deep-seated gravitational slope deformation (DSGSD) and slow mass movements in the southern Tien Shan Mountains front using synthetic aperture radar (SAR) time-series data obtained by the ALOS/PALSAR satellite. DSGSD evolves with a variety of geomorphological changes (e.g. valley erosion, incision of slope drainage networks) over time that affect earth surfaces and, therefore, often remain unexplored. We analysed 118 interferograms generated from 20 SAR images that covered about 900 km(2). To understand the spatial pattern of the slope movements and to identify triggering parameters, we correlated surface dynamics with the tectono-geomorphic processes and lithologic conditions of the active front of the Alai Range. We observed spatially continuous, constant hillslope movements with a downslope speed of approximately 71 mm year(-1) velocity. Our findings suggest that the lithological and structural framework defined by protracted deformation was the main controlling factor for sustained relief and, consequently,We investigated deep-seated gravitational slope deformation (DSGSD) and slow mass movements in the southern Tien Shan Mountains front using synthetic aperture radar (SAR) time-series data obtained by the ALOS/PALSAR satellite. DSGSD evolves with a variety of geomorphological changes (e.g. valley erosion, incision of slope drainage networks) over time that affect earth surfaces and, therefore, often remain unexplored. We analysed 118 interferograms generated from 20 SAR images that covered about 900 km(2). To understand the spatial pattern of the slope movements and to identify triggering parameters, we correlated surface dynamics with the tectono-geomorphic processes and lithologic conditions of the active front of the Alai Range. We observed spatially continuous, constant hillslope movements with a downslope speed of approximately 71 mm year(-1) velocity. Our findings suggest that the lithological and structural framework defined by protracted deformation was the main controlling factor for sustained relief and, consequently, downslope mass movements. The analysed structures revealed integration of a geological/structural setting with the superposition of Cretaceous-Paleogene alternating carbonatic and clastic sedimentary structures as the substratum for younger, less consolidated sediments. This type of structural setting causes the development of large-scale, gravity-driven DSGSD and slow mass movement. Surface deformations with clear scarps and multiple crest lines triggered planes for large-scale deep mass creeps, and these were related directly to active faults and folds in the geologic structures. Our study offers a new combination of InSAR techniques and structural field observations, along with morphometric and seismologic correlations, to identify and quantify slope instability phenomena along a tectonically active mountain front. These results contribute to an improved natural risk assessment in these structures.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Kanayim TeshebaevaORCiDGND, Helmut EchtlerORCiDGND, Bodo BookhagenORCiDGND, Manfred StreckerORCiDGND
DOI:https://doi.org/10.1002/esp.4648
ISSN:0197-9337
ISSN:1096-9837
Title of parent work (English):Earth surface processes and landforms : the journal of the British Geomorphological Research Group
Publisher:Wiley
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/11/05
Tag:Tien Shan Mountains; gravity-driven slope deformation; interferometric SAR (InSAR); landslide; small baseline subset (SBAS); tectonic geomorphology
Volume:44
Issue:12
Number of pages:16
First page:2333
Last Page:2348
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
Open Access / Hybrid Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.