• search hit 2 of 0
Back to Result List

Estimating the fill thickness and bedrock topography in intermontane valleys using artificial neural networks

  • Thick sedimentary fills in intermontane valleys are common in formerly glaciated mountain ranges but difficult to quantify. Yet knowledge of the fill thickness distribution could help to estimate sediment budgets of mountain belts and to decipher the role of stored material in modulating sediment flux from the orogen to the foreland. Here we present a new approach to estimate valley fill thickness and bedrock topography based on the geometric properties of a landscape using artificial neural networks. We test the potential of this approach following a four-tiered procedure. First, experiments with synthetic, idealized landscapes show that increasing variability in surface slopes requires successively more complex network configurations. Second, in experiments with artificially filled natural landscapes, we find that fill volumes can be estimated with an error below 20%. Third, in natural examples with valley fill surfaces that have steeply inclined slopes, such as the Unteraar and the Rhone Glaciers in the Swiss Alps, for example, theThick sedimentary fills in intermontane valleys are common in formerly glaciated mountain ranges but difficult to quantify. Yet knowledge of the fill thickness distribution could help to estimate sediment budgets of mountain belts and to decipher the role of stored material in modulating sediment flux from the orogen to the foreland. Here we present a new approach to estimate valley fill thickness and bedrock topography based on the geometric properties of a landscape using artificial neural networks. We test the potential of this approach following a four-tiered procedure. First, experiments with synthetic, idealized landscapes show that increasing variability in surface slopes requires successively more complex network configurations. Second, in experiments with artificially filled natural landscapes, we find that fill volumes can be estimated with an error below 20%. Third, in natural examples with valley fill surfaces that have steeply inclined slopes, such as the Unteraar and the Rhone Glaciers in the Swiss Alps, for example, the average deviation of cross-sectional area between the measured and the modeled valley fill is 26% and 27%, respectively. Finally, application of the method to the Rhone Valley, an overdeepened glacial valley in the Swiss Alps, yields a total estimated sediment volume of 9711km(3) and an average deviation of cross-sectional area between measurements and model estimates of 21.5%. Our new method allows for rapid assessment of sediment volumes in intermontane valleys while eliminating most of the subjectivity that is typically inherent in other methods where bedrock reconstructions are based on digital elevation models.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jürgen MeyORCiDGND, Dirk Scherler, Gerold ZeilingerORCiDGND, Manfred StreckerORCiDGND
DOI:https://doi.org/10.1002/2014JF003270
ISSN:2169-9003
ISSN:2169-9011
Title of parent work (English):Journal of geophysical research : Earth surface
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:artificial neural networks; geomorphometry; intermontane valleys; sediment storage; sediment thickness
Volume:120
Issue:7
Number of pages:20
First page:1301
Last Page:1320
Funding institution:Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS) through the German Federal Ministry for Education and Research (BMBF); Alexander von Humboldt Foundation
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.