• search hit 5 of 0
Back to Result List

Erosional variability along the northwest Himalaya

  • Erosional exhumation and topography in mountain belts are temporally and spatially variable over million year timescales because of changes in both the location of deformation and climate. We investigate spatiotemporal variations in exhumation across a 150 x 250 km compartment of the NW Himalaya, India. Twenty-four new and 241 previously published apatite and zircon fission track and white mica Ar-40/Ar-39 ages are integrated with a 1-D numerical model to quantify rates and timing of exhumation alongstrike of several major structures in the Lesser, High, and Tethyan Himalaya. Analysis of thermochronometer data suggests major temporal variations in exhumation occurred in the early middle Miocene and at the Plio-Pleistocene transition. (1) Most notably, exhumation rates for the northern High Himalayan compartments were high (2-3 mm a(-1)) between similar to 23-19 and similar to 3-0 Ma and low (0.5-0.7 mm a(-1)) in between similar to 19-3 Ma. (2) Along the southern High Himalayan slopes, however, high exhumation rates of 1-2 mm a(-1)Erosional exhumation and topography in mountain belts are temporally and spatially variable over million year timescales because of changes in both the location of deformation and climate. We investigate spatiotemporal variations in exhumation across a 150 x 250 km compartment of the NW Himalaya, India. Twenty-four new and 241 previously published apatite and zircon fission track and white mica Ar-40/Ar-39 ages are integrated with a 1-D numerical model to quantify rates and timing of exhumation alongstrike of several major structures in the Lesser, High, and Tethyan Himalaya. Analysis of thermochronometer data suggests major temporal variations in exhumation occurred in the early middle Miocene and at the Plio-Pleistocene transition. (1) Most notably, exhumation rates for the northern High Himalayan compartments were high (2-3 mm a(-1)) between similar to 23-19 and similar to 3-0 Ma and low (0.5-0.7 mm a(-1)) in between similar to 19-3 Ma. (2) Along the southern High Himalayan slopes, however, high exhumation rates of 1-2 mm a(-1) existed since 11 Ma. (3) Our thermochronology data sets are poorly correlated with present-day rainfall, local relief, and specific stream power which may likely result from (1) a lack of sensitivity of changes in crustal cooling to spatial variations in erosion at high exhumation rates (>similar to 1 mm a(-1)), (2) spatiotemporal variation in erosion not mimicking the present-day topographic or climatic conditions, or (3) the thermochronometer samples in this region having cooled under topography that only weakly resembled the modern-day topography.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Rasmus Christoph ThiedeORCiDGND, Todd EhlersORCiDGND, Bodo BookhagenORCiDGND, Manfred StreckerORCiDGND
URL:http://www.agu.org/journals/jf/
DOI:https://doi.org/10.1029/2008jf001010
ISSN:0148-0227
Publication type:Article
Language:English
Year of first publication:2009
Publication year:2009
Release date:2017/03/25
Source:Journal of geophysical research : earth surface. - ISSN 0148-0227. - 114 (2009), Art. F01015
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.