The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 5
Back to Result List

Phase transition in 1,3,4-oxadiazole crystals under high pressure

  • Crystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a = 0.5448 nm, b = 1.2758 nm, c = 1.9720 nm, density 1.513 g cm-3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and IIICrystalline 2,5-di(4-nitrophenyl)-1,3,4-oxadiazole (DNO) has been investigated at pressures up to 5 GPa using Raman and optical spectroscopy as well as energy dispersive X-ray techniques. At ambient pressure DNO shows an orthorhombic unit cell (a = 0.5448 nm, b = 1.2758 nm, c = 1.9720 nm, density 1.513 g cm-3) with an appropriate space group Pbcn. From Raman spectroscopic investigations three phase transitions have been detected at 0.88, 1.28, and 2.2 GPa, respectively. These transitions have also been confirmed by absorption spectroscopy and X-ray measurements. Molecular modeling simulations have considerably contributed to the interpretation of the X-ray diffractograms. In general, the nearly flat structure of the oxadiazole molecule is preserved during the transitions. All subsequent structures are characterized by a stack-like arrangement of the DNO molecules. Only the mutual position of these molecular stacks changes due to the transformations so that this process may be described as a topotactical reaction. Phases II and III show a monoclinic symmetry with space group P21/c with cell parameters a = 1.990 nm, b = 0.500 nm, c = 1.240 nm, ß = 91.7°, density 1.681 g cm-3 (phase II, determined at 1. 1 GPa) and a = 1.890 nm, b = 0.510 nm, C = 1.242 nm, ß = 89.0°, density 1.733 g cm-3 (phase 111, determined at 2.0 GPa), respectively. The high-pressure phase IV stable at least up to 5 GPa shows again an orthorhombic structure with space group Pccn with corresponding cell parameters at 2.9 GPa: a = 0.465 nm, b = 1.920 nm, c = 1.230 nm and density 1.857 g cm-3 . For the first phase a blue pressure shift of the onset of absorption by about 0.032 eV GPa has been observed that may be explained by pressure influences on the electronic conjugation of the molecule. In the intermediate and high-pressure phases II-IV the onset of absorption shifts to increased wavelengths due to larger intermolecular interactions and enhanced excitation delocalization with decreasing intermolecular spacing.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ingo Orgzall, Bernd Lorenz, Jürgen E. R. Mikat, Günter Reck, Gerald Knochenhauer, Burkhard SchulzORCiDGND
Publication type:Article
Language:English
Year of first publication:1999
Publication year:1999
Release date:2017/03/24
Source:The journal of physics and chemistry of solids : JPCS ; an international journal. - 60 (1999), S. 1949 - 1965
Organizational units:Zentrale und wissenschaftliche Einrichtungen / Interdisziplinäres Zentrum für Dünne Organische und Biochemische Schichten
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.