• search hit 6 of 87
Back to Result List

Thin films of substituted polyanilines interactions with biomolecular systems

  • We use substituted polyanilines for the construction of new polymer electrodes for interaction studies with the redox protein cytochrome c (cyt c) and the enzyme sulfite oxidase (SO). For these purposes four different polyaniline copolymers are chemically synthesized. Three of them are copolymers, containing 2-methoxyaniline-5-sulfonic acid with variable ratios of aniline; the fourth copolymer consists of 3-amino-benzoic acid and aniline. The results show that all polymers are suitable for being immobilized as thin stable films on gold wire and indium tin oxide (ITO) electrode surfaces from DMSO solution. This can be demonstrated by cyclic voltammetry and UV-Vis spectroscopy measurements. Moreover, cyt c can be electrochemically detected not only in solution, but also immobilized on top of the polymer films. Furthermore, the appearance of a significant catalytic current has been demonstrated for the sulfonated polyanilines, when the polymer-coated protein electrode is being measured upon addition of sulfite oxidase, confirming theWe use substituted polyanilines for the construction of new polymer electrodes for interaction studies with the redox protein cytochrome c (cyt c) and the enzyme sulfite oxidase (SO). For these purposes four different polyaniline copolymers are chemically synthesized. Three of them are copolymers, containing 2-methoxyaniline-5-sulfonic acid with variable ratios of aniline; the fourth copolymer consists of 3-amino-benzoic acid and aniline. The results show that all polymers are suitable for being immobilized as thin stable films on gold wire and indium tin oxide (ITO) electrode surfaces from DMSO solution. This can be demonstrated by cyclic voltammetry and UV-Vis spectroscopy measurements. Moreover, cyt c can be electrochemically detected not only in solution, but also immobilized on top of the polymer films. Furthermore, the appearance of a significant catalytic current has been demonstrated for the sulfonated polyanilines, when the polymer-coated protein electrode is being measured upon addition of sulfite oxidase, confirming the establishment of a bioanalytical signal chain. Best results have been obtained for the polymer with highest sulfonation grade. The redox switching of the polymer by the enzymatic reaction can also be analyzed by following the spectral properties of the polymer electrode.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:David Sarauli, Chenggang Xu, Birgit Dietzel, Konstanze Stiba, Silke Leimkühler, Burkhard SchulzORCiDGND, Fred Lisdat
DOI:https://doi.org/10.1039/c2sm07261k
ISSN:1744-683X (print)
Parent Title (English):Soft matter
Publisher:Royal Society of Chemistry
Place of publication:Cambridge
Document Type:Article
Language:English
Year of first Publication:2012
Year of Completion:2012
Release Date:2017/03/26
Volume:8
Issue:14
Pagenumber:8
First Page:3848
Last Page:3855
Funder:BMBF, Germany [02IS2201I]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer Review:Referiert