The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 52
Back to Result List

Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe

  • The general warming trend of the last deglaciation was interrupted by the Younger Dryas, a period of abrupt cooling and widespread environmental change(1-10). Ice core records suggest the abrupt cooling began 12,846 years ago in Greenland(10), about 170 years before the significant environmental and vegetation change in western Europe(7) classically defined as the Younger Dryas. However, this difference in timing falls within age model uncertainties. Here we use the hydrogen isotope composition of lipid biomarkers from precisely dated varved sediments from Lake Meerfelder Maar to reconstruct hydroclimate over western Europe. We observe a decrease in the hydrogen isotope values of both aquatic and terrestrial lipids 12,850 years ago, indicating cooling climate in this region synchronous with the abrupt cooling in Greenland. A second drop occurs 170 years later, mainly in the hydrogen isotope record of aquatic lipids but to a lesser extent in the terrestrial lipids, which we attribute to aridification, as well as a change in moistureThe general warming trend of the last deglaciation was interrupted by the Younger Dryas, a period of abrupt cooling and widespread environmental change(1-10). Ice core records suggest the abrupt cooling began 12,846 years ago in Greenland(10), about 170 years before the significant environmental and vegetation change in western Europe(7) classically defined as the Younger Dryas. However, this difference in timing falls within age model uncertainties. Here we use the hydrogen isotope composition of lipid biomarkers from precisely dated varved sediments from Lake Meerfelder Maar to reconstruct hydroclimate over western Europe. We observe a decrease in the hydrogen isotope values of both aquatic and terrestrial lipids 12,850 years ago, indicating cooling climate in this region synchronous with the abrupt cooling in Greenland. A second drop occurs 170 years later, mainly in the hydrogen isotope record of aquatic lipids but to a lesser extent in the terrestrial lipids, which we attribute to aridification, as well as a change in moisture source and pathway. We thus confirm that there was indeed a lag between cooling and substantial hydrologic and environmental change in western Europe. We suggest the delay is related to the expansion of sea ice in the North Atlantic Ocean and the subsequent southward migration of the westerly wind system(9). We further suggest that these hydrological changes amplified environmental change in western Europe at the onset of the Younger Dryas.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Oliver Rach, Achim BrauerORCiDGND, Heinz Wilkes, Dirk SachseORCiDGND
DOI:https://doi.org/10.1038/NGEO2053
ISSN:1752-0894
ISSN:1752-0908
Title of parent work (English):Nature geoscience
Publisher:Nature Publ. Group
Place of publishing:New York
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:7
Issue:2
Number of pages:4
First page:109
Last Page:112
Funding institution:DFG Emmy-Noether grant [SA1889/1-1]; INTIMATE project, EU COST Action [ES0907]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.