The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 52
Back to Result List

Leaf water deuterium enrichment shapes leaf wax n-alkane delta D values of angiosperm plants I experimental evidence and mechanistic insights

  • Leaf wax n-alkanes of terrestrial plants are long-chain hydrocarbons that can persist in sedimentary records over geologic timescales. Since meteoric water is the primary source of hydrogen used in leaf wax synthesis, the hydrogen isotope composition (delta D value) of these biomarkers contains information on hydrological processes. Consequently, leaf wax n-alkane delta D values have been advocated as powerful tools for paleohydrological research. The exact kind of hydrological information that is recorded in leaf wax n-alkanes remains, however, unclear because critical processes that determine their delta D values have not yet been resolved. In particular the effects of evaporative deuterium (D)-enrichment of leaf water on the delta D values of leaf wax n-alkanes have not yet been directly assessed and quantified. Here we present the results of a study where we experimentally tested if and by what magnitude evaporative D-enrichment of leaf water affects the delta D of leaf wax n-alkanes in angiosperm C3 and C4 plants. Our studyLeaf wax n-alkanes of terrestrial plants are long-chain hydrocarbons that can persist in sedimentary records over geologic timescales. Since meteoric water is the primary source of hydrogen used in leaf wax synthesis, the hydrogen isotope composition (delta D value) of these biomarkers contains information on hydrological processes. Consequently, leaf wax n-alkane delta D values have been advocated as powerful tools for paleohydrological research. The exact kind of hydrological information that is recorded in leaf wax n-alkanes remains, however, unclear because critical processes that determine their delta D values have not yet been resolved. In particular the effects of evaporative deuterium (D)-enrichment of leaf water on the delta D values of leaf wax n-alkanes have not yet been directly assessed and quantified. Here we present the results of a study where we experimentally tested if and by what magnitude evaporative D-enrichment of leaf water affects the delta D of leaf wax n-alkanes in angiosperm C3 and C4 plants. Our study revealed that n-alkane delta D values of all plants that we investigated were affected by evaporative D-enrichment of leaf water. For dicotyledonous plants we found that the full extent of leaf water evaporative D-enrichment is recorded in leaf wax n-alkane delta D values. For monocotyledonous plants we found that between 18% and 68% of the D-enrichment in leaf water was recorded in the delta D values of their n-alkanes. We hypothesize that the different magnitudes by which evaporative D-enrichment of leaf water affects the delta D values of leaf wax n-alkanes in monocotyledonous and dicotyledonous plants is the result of differences in leaf growth and development between these plant groups. Our finding that the evaporative D-enrichment of leaf water affects the delta D values of leaf wax n-alkanes in monocotyledonous and dicotyledonous plants albeit at different magnitudes - has important implications for the interpretation of leaf wax n-alkane delta D values from paleohydrological records. In addition, our finding opens the door to employ delta D values of leaf wax n-alkanes as new ecohydrological proxies for evapotranspiration that can be applied in contemporary plant and ecosystem research.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ansgar Kahmen, Enno Schefuss, Dirk SachseORCiDGND
DOI:https://doi.org/10.1016/j.gca.2012.09.003
ISSN:0016-7037
Title of parent work (English):Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Volume:111
Number of pages:11
First page:39
Last Page:49
Funding institution:ERC [279518 COSIWAX]; German Science Foundation [DFG SA-1889/1-1, DFG Sche903/8-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.