The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 28
Back to Result List

Comparison of storm damage functions and their performance

  • Winter storms are the most costly natural hazard for European residential property. We compare four distinct storm damage functions with respect to their forecast accuracy and variability, with particular regard to the most severe winter storms. The analysis focuses on daily loss estimates under differing spatial aggregation, ranging from district to country level. We discuss the broad and heavily skewed distribution of insured losses posing difficulties for both the calibration and the evaluation of damage functions. From theoretical considerations, we provide a synthesis between the frequently discussed cubic wind–damage relationship and recent studies that report much steeper damage functions for European winter storms. The performance of the storm loss models is evaluated for two sources of wind gust data, direct observations by the German Weather Service and ERA-Interim reanalysis data. While the choice of gust data has little impact on the evaluation of German storm loss, spatially resolved coefficients of variation revealWinter storms are the most costly natural hazard for European residential property. We compare four distinct storm damage functions with respect to their forecast accuracy and variability, with particular regard to the most severe winter storms. The analysis focuses on daily loss estimates under differing spatial aggregation, ranging from district to country level. We discuss the broad and heavily skewed distribution of insured losses posing difficulties for both the calibration and the evaluation of damage functions. From theoretical considerations, we provide a synthesis between the frequently discussed cubic wind–damage relationship and recent studies that report much steeper damage functions for European winter storms. The performance of the storm loss models is evaluated for two sources of wind gust data, direct observations by the German Weather Service and ERA-Interim reanalysis data. While the choice of gust data has little impact on the evaluation of German storm loss, spatially resolved coefficients of variation reveal dependence between model and data choice. The comparison shows that the probabilistic models by Heneka et al. (2006) and Prahl et al. (2012) both provide accurate loss predictions for moderate to extreme losses, with generally small coefficients of variation. We favour the latter model in terms of model applicability. Application of the versatile deterministic model by Klawa and Ulbrich (2003) should be restricted to extreme loss, for which it shows the least bias and errors comparable to the probabilistic model by Prahl et al. (2012).show moreshow less

Download full text files

  • pmnr492.pdfeng
    (2612KB)

    SHA-1: ff4eb9d24ece6a658b354e193642e1814370ddfe

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Boris F. PrahlORCiDGND, Diego RybskiORCiDGND, Olaf Burghoff, Jürgen KroppORCiDGND
URN:urn:nbn:de:kobv:517-opus4-408119
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (492)
Publication type:Postprint
Language:English
Date of first publication:2019/01/17
Publication year:2015
Publishing institution:Universität Potsdam
Release date:2019/01/17
Tag:buildings; climate; data series; homogenization; integrated kinetic-energy; losses; model; residential structures; risk-assessment; wind speeds
Issue:492
Number of pages:20
Source:Natural Hazards and Earth System Sciences 15 (2015), pp. 769-788 DOI: 10.5194/nhess-15-769-2015
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Peer review:Referiert
Publishing method:Open Access
Grantor:Copernicus
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.