The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 16
Back to Result List

Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity

  • In this paper we investigate the use of hydrological models as learning tools to help improve our understanding of the hydrological functioning of a catchment. With the model as a hypothetical conceptualization of how dominant hydrological processes contribute to catchment-scale response, we investigate three questions: (1) During which periods does the model (not) reproduce observed quantities and dynamics? (2) What is the nature of the error during times of bad model performance? (3) Which model components are responsible for this error? To investigate these questions, we combine a method for detecting repeating patterns of typical differences between model and observations (time series of grouped errors, TIGER) with a method for identifying the active model components during each simulation time step based on parameter sensitivity (temporal dynamics of parameter sensitivities, TEDPAS). The approach generates a time series of occurrence of dominant error types and time series of parameter sensitivities. A synoptic discussion ofIn this paper we investigate the use of hydrological models as learning tools to help improve our understanding of the hydrological functioning of a catchment. With the model as a hypothetical conceptualization of how dominant hydrological processes contribute to catchment-scale response, we investigate three questions: (1) During which periods does the model (not) reproduce observed quantities and dynamics? (2) What is the nature of the error during times of bad model performance? (3) Which model components are responsible for this error? To investigate these questions, we combine a method for detecting repeating patterns of typical differences between model and observations (time series of grouped errors, TIGER) with a method for identifying the active model components during each simulation time step based on parameter sensitivity (temporal dynamics of parameter sensitivities, TEDPAS). The approach generates a time series of occurrence of dominant error types and time series of parameter sensitivities. A synoptic discussion of these time series highlights deficiencies in the assumptions about the functioning of the catchment. The approach is demonstrated for the Weisseritz headwater catchment in the eastern Ore Mountains. Our results indicate that the WaSiM-ETH complex grid-based model is not a sufficient working hypothesis for the functioning of the Weisseritz catchment and point toward future steps that can help improve our understanding of the catchment.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Dominik Edwin ReusserORCiDGND, Erwin Zehe
DOI:https://doi.org/10.1029/2010WR009946
ISSN:0043-1397
ISSN:1944-7973
Title of parent work (English):Water resources research
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Volume:47
Number of pages:15
Funding institution:BMBF-Forderaktivitat "Risikomanagement extremer Hochwasserereignisse" (RIMAX)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie und Geoökologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.