The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 4
Back to Result List

Density of amorphous GeO2 to 133 GPa with possible pyritelike structure and stiffness at high pressure

  • Germanium oxide is a prototype network-forming oxide with pressure-induced structural changes similar to those found in crystals and amorphous silicate oxides at high pressure. Studying density and coordination changes in amorphous GeO2 allows for insight into structural changes in silicate oxides at very high pressure, with implications for the properties of planetary magmas. Here, we report the density of germanium oxide glass up to 133 GPa using the x-ray absorption technique, with very good agreement with previous experimental data at pressure below 40 GPa and recent calculation up to 140 GPa. Our data highlight four distinct compressibility domains, corresponding to changes of the local structure of GeO2. Above 80 GPa, our density data show a compressibility and bulk modulus similar to the counterpart crystal phase, and we propose that a compact distorted sixfold coordination, similar to the structural motif of the pyritelike crystalline GeO2 polymorph, is likely to be stable in that pressure range. Our density data point to aGermanium oxide is a prototype network-forming oxide with pressure-induced structural changes similar to those found in crystals and amorphous silicate oxides at high pressure. Studying density and coordination changes in amorphous GeO2 allows for insight into structural changes in silicate oxides at very high pressure, with implications for the properties of planetary magmas. Here, we report the density of germanium oxide glass up to 133 GPa using the x-ray absorption technique, with very good agreement with previous experimental data at pressure below 40 GPa and recent calculation up to 140 GPa. Our data highlight four distinct compressibility domains, corresponding to changes of the local structure of GeO2. Above 80 GPa, our density data show a compressibility and bulk modulus similar to the counterpart crystal phase, and we propose that a compact distorted sixfold coordination, similar to the structural motif of the pyritelike crystalline GeO2 polymorph, is likely to be stable in that pressure range. Our density data point to a smooth continuous evolution of the average coordination for pressure above 20 GPa with persistent sixfold coordination, without sharp density or density slope discontinuities. These observations are in very good agreement with theoretical calculations and spectroscopic measurements, and our results indicate that glasses and melts may behave similarly to their high-pressure solid counterparts with comparable densities, compressibility, and possibly average coordination.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sylvain PetitgirardORCiDGND, Georg SpiekermannORCiDGND, Konstantin GlazyrinORCiD, Jan GarrevoetORCiDGND, Motohiko MurakamiORCiD
DOI:https://doi.org/10.1103/PhysRevB.100.214104
ISSN:2469-9950
ISSN:2469-9969
Title of parent work (English):Physical review : B, Condensed matter and materials physics
Publisher:American Physical Society
Place of publishing:College Park
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/09/15
Volume:100
Issue:21
Number of pages:8
Funding institution:project CALIPSOplus under EU Framework Programme for Research and Innovation HORIZON 2020 [730872]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access
Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.