The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 36
Back to Result List

"Schizophrenic" self-assembly of dual thermoresponsive block copolymers bearing a zwitterionic and a non-ionic hydrophilic block

  • Several series of presumed dual thermo-responsive diblock copolymers consisting of one non-ionic and one zwitterionic block were synthesized via consecutive reversible addition-fragmentation chain transfer (RAFT) polymerization. For all copolymers, poly(N-isopropylmethacrylamide) was chosen as non-ionic block that shows a coil-to-globule collapse transition of the lower critical solution temperature (LCST) type. In contrast, the chemical structure of zwitterionic blocks, which all belonged to the class of poly(sulfobetaine methacrylate)s, was varied broadly, in order to tune their coil-to-globule collapse transition of the upper critical solution temperature (UCST) type. All polymers were labeled with a solvatochromic fluorescent end-group. The dual thermo-responsive behavior and the resulting multifarious temperature-dependent self-assembly in aqueous solution were mapped by temperature resolved turbidimetry, H-1 NMR spectroscopy, dynamic light scattering (DLS), and fluorescence spectroscopy. Depending on the relative positionsSeveral series of presumed dual thermo-responsive diblock copolymers consisting of one non-ionic and one zwitterionic block were synthesized via consecutive reversible addition-fragmentation chain transfer (RAFT) polymerization. For all copolymers, poly(N-isopropylmethacrylamide) was chosen as non-ionic block that shows a coil-to-globule collapse transition of the lower critical solution temperature (LCST) type. In contrast, the chemical structure of zwitterionic blocks, which all belonged to the class of poly(sulfobetaine methacrylate)s, was varied broadly, in order to tune their coil-to-globule collapse transition of the upper critical solution temperature (UCST) type. All polymers were labeled with a solvatochromic fluorescent end-group. The dual thermo-responsive behavior and the resulting multifarious temperature-dependent self-assembly in aqueous solution were mapped by temperature resolved turbidimetry, H-1 NMR spectroscopy, dynamic light scattering (DLS), and fluorescence spectroscopy. Depending on the relative positions between the UCST-type and LCST-type transition temperatures, as well as on the width of the window in-between, all the four possible modes of stimulus induced micellization can be realized. This includes classical induced micellization due to a transition from a double hydrophilic, or respectively, from a double hydrophobic to an amphiphilic state, as well as "schizophrenic" behavior, where the core- and shell-forming blocks are inverted. The exchange of the roles of the hydrophilic and hydrophobic block in the amphiphilic states is possible through a homogeneous intermediate state or a heterogeneous one. (C) 2017 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Viet HildebrandGND, Matthias HeydenreichORCiD, Andre LaschewskyORCiDGND, Heiko M. Moeller, Peter Mueller-Buschbaum, Christine M. PapadakisORCiDGND, Dirk SchanzenbachORCiD, Erik Wischerhoff
DOI:https://doi.org/10.1016/j.polymer.2017.06.063
ISSN:0032-3861
ISSN:1873-2291
Title of parent work (English):Polymer : the international journal for the science and technology of polymers
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2017
Publication year:2017
Release date:2020/04/20
Tag:Block copolymer; LCST; RAFT polymerization; Responsive polymer; Schizophrenic self-assembly; Sulfobetaine methacrylate; UCST
Volume:122
Number of pages:11
First page:347
Last Page:357
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [LA 611/11-1, MU 1487/17-1, PA 771/14-1]
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften / Department Psychologie
Peer review:Referiert
Institution name at the time of the publication:Humanwissenschaftliche Fakultät / Institut für Psychologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.