The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 40
Back to Result List

Influence of tyrosine-derived moieties and drying conditions on the formation of helices in gelatin

  • The single and triple helical organization of protein chains strongly influences the mechanical properties of gelatin-based materials. A chemical method for obtaining different degrees of helical organization in gelatin is covalent functionalization, while a physical method for achieving the same goal is the variation of the drying conditions of gelatin solutions. Here we explored how the introduction of desaminotyrosine (DAT) and desaminotyrosyl tyrosine (DATT) linked to lysine residues of gelatin influenced the kinetics and thermodynamic equilibrium of the helicalization process of single and triple helices following different drying conditions. Drying at a temperature above. the helix-to-coil transition temperature of gelatin (T > T-c, called nu(short)) generally resulted in gelatins with relatively lower triple helical content (X-c,X-t = 1-2%) than lower temperature drying (T < T-c, called nu(long)) (X-c,X-t = 8-10%), where the DAT(T) functional groups generally disrupted helix formation. While different helical contents affectedThe single and triple helical organization of protein chains strongly influences the mechanical properties of gelatin-based materials. A chemical method for obtaining different degrees of helical organization in gelatin is covalent functionalization, while a physical method for achieving the same goal is the variation of the drying conditions of gelatin solutions. Here we explored how the introduction of desaminotyrosine (DAT) and desaminotyrosyl tyrosine (DATT) linked to lysine residues of gelatin influenced the kinetics and thermodynamic equilibrium of the helicalization process of single and triple helices following different drying conditions. Drying at a temperature above. the helix-to-coil transition temperature of gelatin (T > T-c, called nu(short)) generally resulted in gelatins with relatively lower triple helical content (X-c,X-t = 1-2%) than lower temperature drying (T < T-c, called nu(long)) (X-c,X-t = 8-10%), where the DAT(T) functional groups generally disrupted helix formation. While different helical contents affected the thermal transition temperatures only slightly, the mechanical properties were strongly affected for swollen hydrogels (E = 4-13 kPa for samples treated by nu(long) and E = 120-700 kPa for samples treated by nu(short)). This study shows that side group functionalization and different drying conditions are viable options to control the helicalization and macroscopic properties of gelatin-based materials.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alessandro Zaupa, Axel T. NeffeORCiDGND, Benjamin F. Pierce, Ulrich NöchelGND, Andreas LendleinORCiDGND
DOI:https://doi.org/10.1021/bm101029k
ISSN:1525-7797
Title of parent work (English):Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences
Publisher:American Chemical Society
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Volume:12
Issue:1
Number of pages:7
First page:75
Last Page:81
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [SFB 760, B5]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.