The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 55
Back to Result List

Inverted critical adsorption of polyelectrolytes in confinement

  • What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer–surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sc—defining the adsorption–desorption transition—are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation.What are the fundamental laws for the adsorption of charged polymers onto oppositely charged surfaces, for convex, planar, and concave geometries? This question is at the heart of surface coating applications, various complex formation phenomena, as well as in the context of cellular and viral biophysics. It has been a long-standing challenge in theoretical polymer physics; for realistic systems the quantitative understanding is however often achievable only by computer simulations. In this study, we present the findings of such extensive Monte-Carlo in silico experiments for polymer–surface adsorption in confined domains. We study the inverted critical adsorption of finite-length polyelectrolytes in three fundamental geometries: planar slit, cylindrical pore, and spherical cavity. The scaling relations extracted from simulations for the critical surface charge density sc—defining the adsorption–desorption transition—are in excellent agreement with our analytical calculations based on the ground-state analysis of the Edwards equation. In particular, we confirm the magnitude and scaling of sc for the concave interfaces versus the Debye screening length 1/k and the extent of confinement a for these three interfaces for small ka values. For large ka the critical adsorption condition approaches the known planar limit. The transition between the two regimes takes place when the radius of surface curvature or half of the slit thickness a is of the order of 1/k. We also rationalize how sc(k) dependence gets modified for semi-flexible versus flexible chains under external confinement. We examine the implications of the chain length for critical adsorption—the effect often hard to tackle theoretically—putting an emphasis on polymers inside attractive spherical cavities. The applications of our findings to some biological systems are discussed, for instance the adsorption of nucleic acids onto the inner surfaces of cylindrical and spherical viral capsids.show moreshow less

Download full text files

  • pmnr_214.pdfeng
    (2759KB)

    SHA-1:0dac50a0d9f9b128ad3ceb81ce4c2dc1a8c231d1

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sidney J. de Carvalho, Ralf MetzlerORCiDGND, Andrey G. CherstvyORCiD
URN:urn:nbn:de:kobv:517-opus4-89562
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (214)
Publication type:Postprint
Language:English
Date of first publication:2015/04/22
Publication year:2015
Publishing institution:Universität Potsdam
Release date:2016/04/08
First page:4430
Last Page:4443
Source:Soft Matter (2015) Nr. 11, 4430-4443. - DOI: 10.1039/C5SM00635J
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Peer review:Referiert
Publishing method:Open Access
License (English):License LogoCreative Commons - Namensnennung 3.0 Unported
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.