• search hit 1 of 1
Back to Result List

The thermal and rheological state of the Northern Argentinian foreland basins

Der thermische und rheologische Zustand der Nordargentinischen Vorlandbecken

  • The foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal décollement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositionalThe foreland of the Andes in South America is characterised by distinct along strike changes in surface deformational styles. These styles are classified into two end-members, the thin-skinned and the thick-skinned style. The superficial expression of thin-skinned deformation is a succession of narrowly spaced hills and valleys, that form laterally continuous ranges on the foreland facing side of the orogen. Each of the hills is defined by a reverse fault that roots in a basal décollement surface within the sedimentary cover, and acted as thrusting ramp to stack the sedimentary pile. Thick-skinned deformation is morphologically characterised by spatially disparate, basement-cored mountain ranges. These mountain ranges are uplifted along reactivated high-angle crustal-scale discontinuities, such as suture zones between different tectonic terranes. Amongst proposed causes for the observed variation are variations in the dip angle of the Nazca plate, variation in sediment thickness, lithospheric thickening, volcanism or compositional differences. The proposed mechanisms are predominantly based on geological observations or numerical thermomechanical modelling, but there has been no attempt to understand the mechanisms from a point of data-integrative 3D modelling. The aim of this dissertation is therefore to understand how lithospheric structure controls the deformational behaviour. The integration of independent data into a consistent model of the lithosphere allows to obtain additional evidence that helps to understand the causes for the different deformational styles. Northern Argentina encompasses the transition from the thin-skinned fold-and-thrust belt in Bolivia, to the thick-skinned Sierras Pampeanas province, which makes this area a well suited location for such a study. The general workflow followed in this study first involves data-constrained structural- and density-modelling in order to obtain a model of the study area. This model was then used to predict the steady-state thermal field, which was then used to assess the present-day rheological state in northern Argentina. The structural configuration of the lithosphere in northern Argentina was determined by means of data-integrative, 3D density modelling verified by Bouguer gravity. The model delineates the first-order density contrasts in the lithosphere in the uppermost 200 km, and discriminates bodies for the sediments, the crystalline crust, the lithospheric mantle and the subducting Nazca plate. To obtain the intra-crustal density structure, an automated inversion approach was developed and applied to a starting structural model that assumed a homogeneously dense crust. The resulting final structural model indicates that the crustal structure can be represented by an upper crust with a density of 2800 kg/m³, and a lower crust of 3100 kg/m³. The Transbrazilian Lineament, which separates the Pampia terrane from the Río de la Plata craton, is expressed as a zone of low average crustal densities. In an excursion, we demonstrate in another study, that the gravity inversion method developed to obtain intra-crustal density structures, is also applicable to obtain density variations in the uppermost lithospheric mantle. Densities in such sub-crustal depths are difficult to constrain from seismic tomographic models due to smearing of crustal velocities. With the application to the uppermost lithospheric mantle in the north Atlantic, we demonstrate in Tan et al. (2018) that lateral density trends of at least 125\,km width are robustly recovered by the inversion method, thereby providing an important tool for the delineation of subcrustal density trends. Due to the genetic link between subduction, orogenesis and retroarc foreland basins the question rises whether the steady-state assumption is valid in such a dynamic setting. To answer this question, I analysed (i) the impact of subduction on the conductive thermal field of the overlying continental plate, (ii) the differences between the transient and steady-state thermal fields of a geodynamic coupled model. Both studies indicate that the assumption of a thermal steady-state is applicable in most parts of the study area. Within the orogenic wedge, where the assumption cannot be applied, I estimated the transient thermal field based on the results of the conducted analyses. Accordingly, the structural model that had been obtained in the first step, could be used to obtain a 3D conductive steady-state thermal field. The rheological assessment based on this thermal field indicates that the lithosphere of the thin-skinned Subandean ranges is characterised by a relatively strong crust and a weak mantle. Contrarily, the adjacent foreland basin consists of a fully coupled, very strong lithosphere. Thus, shortening in northern Argentina can only be accommodated within the weak lithosphere of the orogen and the Subandean ranges. The analysis suggests that the décollements of the fold-and-thrust belt are the shallow continuation of shear zones that reside in the ductile sections of the orogenic crust. Furthermore, the localisation of the faults that provide strain transfer between the deeper ductile crust and the shallower décollement is strongly influenced by crustal weak zones such as foliation. In contrast to the northern foreland, the lithosphere of the thick-skinned Sierras Pampeanas is fully coupled and characterised by a strong crust and mantle. The high overall strength prevents the generation of crustal-scale faults by tectonic stresses. Even inherited crustal-scale discontinuities, such as sutures, cannot sufficiently reduce the strength of the lithosphere in order to be reactivated. Therefore, magmatism that had been identified to be a precursor of basement uplift in the Sierras Pampeanas, is the key factor that leads to the broken foreland of this province. Due to thermal weakening, and potentially lubrication of the inherited discontinuities, the lithosphere is locally weakened such that tectonic stresses can uplift the basement blocks. This hypothesis explains both the spatially disparate character of the broken foreland, as well as the observed temporal delay between volcanism and basement block uplift. This dissertation provides for the first time a data-driven 3D model that is consistent with geophysical data and geological observations, and that is able to causally link the thermo-rheological structure of the lithosphere to the observed variation of surface deformation styles in the retroarc foreland of northern Argentina.show moreshow less
  • Das Vorland der südamerikanischen Anden ist durch lateral variierende Deformationsregimes des östlichen Vorlands geprägt. Dabei treten zwei grundlegend verschiedene Endglieder mit charakteristischer Architektur auf: flach abgescherte Falten- und Überschiebungsgürtel einerseits und Vorland-Sockelüberschiebungen ("zerbrochenes Vorland") andererseits. Das morphologische Erscheinungsbild der Falten- und Überschiebungsgürtel entspricht lateral ausgedehnten, dicht aneinander gereihten Abfolgen von Hügeln und Tälern. Die Hügel werden durch eine darunter liegende Überschiebung definiert, die in einem subhorizontalen Abscherhorizont in 10 bis 20 km Tiefe endet. Sockelüberschiebungen hingegen sind in Gebieten mit geringer Sedimentmächtigkeit zu finden und sind durch weit auseinander liegende Erhebungen charakterisiert, welche von steil einfallenden, reaktivierten krustenskaligen Verwerfungen begrenzt werden. Als Ursachen der beobachteten Deformationsvariationen wurden präexistente Schwächezonen, Sedimentmächtigkeiten, Lithosphärenverdickung,Das Vorland der südamerikanischen Anden ist durch lateral variierende Deformationsregimes des östlichen Vorlands geprägt. Dabei treten zwei grundlegend verschiedene Endglieder mit charakteristischer Architektur auf: flach abgescherte Falten- und Überschiebungsgürtel einerseits und Vorland-Sockelüberschiebungen ("zerbrochenes Vorland") andererseits. Das morphologische Erscheinungsbild der Falten- und Überschiebungsgürtel entspricht lateral ausgedehnten, dicht aneinander gereihten Abfolgen von Hügeln und Tälern. Die Hügel werden durch eine darunter liegende Überschiebung definiert, die in einem subhorizontalen Abscherhorizont in 10 bis 20 km Tiefe endet. Sockelüberschiebungen hingegen sind in Gebieten mit geringer Sedimentmächtigkeit zu finden und sind durch weit auseinander liegende Erhebungen charakterisiert, welche von steil einfallenden, reaktivierten krustenskaligen Verwerfungen begrenzt werden. Als Ursachen der beobachteten Deformationsvariationen wurden präexistente Schwächezonen, Sedimentmächtigkeiten, Lithosphärenverdickung, Vulkanismus oder kompositionelle Eigenschaften aufgeführt. Diese Vorschläge waren überwiegend konzeptuell und meist auf Grundlage von Feldbeobachtungen oder synthetischen numerischen, thermo-mechanischen Modelle abgeleitet. Die vorliegende Dissertation beleuchtet zum ersten mal die Ursachen der beobachteten Deformationsstile aus der Perspektive von dreidimensionaler, Daten-integrativer Modellierung. Durch die Integration voneinander unabhängiger Daten erlaubt diese Art der Beschreibung des physikalischen Zustands der Lithosphäre die Erlangung zusätzliche Hinweise auf die zugrundeliegenden Ursachen der verschiedenen Derformationsregimes. Für eine solche Studie bietet sich Nord-Argentinien an, da dort beide Vorland-Endglieder vorzufinden sind. Die dafür im wesentlichen durchgeführten Arbeitsschritte beinhalten die Erstellung eines strukturellen Dichtemodells des Untersuchungsgebiets, die Berechnung des 3D stationären thermischen Feldes, sowie die Analyse der rheologischen Eigenschaften der Lithosphäre. Das datenbasierte strukturelle Dichtemodell ist mit verschiedenen geologischen und geophysikalischen Beobachtungen sowie dem Bouguer-Schwerefeld konsistent. Dieses Modell bildet die primären Dichtekontraste der oberen 200 km der Lithosphäre ab und differenziert Körper für die Sedimente, die kristalline Kruste, den lithosphärischen Mantel, und die subduzierende Nazca-Platte. Um die krusteninterne Dichteverteilung zu erhalten wurde ein automatisierter Inversionsprozess entworfen der es erlaubt eine leichtere Oberkruste und eine schwerere Unterkruste geometrisch zu definieren. Die Modellierung zeigt, dass die Kruste in Nord-Argentinien durch eine leichtere Oberkruste (2800 kg/m³) und eine dichtere Unterkruste (3100 kg/m³) repräsentiert werden kann. Das Transbrasilianische Linement, welches das Pampia Terran im Westen vom Río de La Plata Kraton im Osten trennt, ist durch eine im Vergleich zur Umgebung geringere durchschnittliche Krustendichte charakterisiert. In einem Exkurs wird anschließend demonstriert, dass die hier entwickelte Inversionsmethodik zur Ermittlung von intrakrustalen Dichtekontrasten auch im obersten lithosphärischen Mantel angewandt werden kann. Dichten zwischen der Kruste-Mantel-Grenze und etwa 50\,km Tiefe sind besonders schwer zu bestimmen, da tomographische Modelle die Geschwindigkeitsvariationen von seismischen Wellen in diesen Bereichen nicht auflösen. In Tan u.a. (2018) demonstrieren wir, dass die Inversionsmethode Dichteverläufe mit einer lateralen Ausdehnung von 125 km oder weniger ermitteln kann, und somit einen wichtigen Beitrag zur Bestimmung von subkrustalen Dichteverteilungen im Mantel liefert. Wegen der genetischen Verbindung zwischen Subduktion, Orogenese und Retroarc Vorlandbecken stellt sich die Frage, ob die Annahme eines stationären thermischen Feldes für solch ein dynamisches Modelliergebiet zulässig ist. Um diese Frage zu beantworten wurde zum einen der Einfluss von Subduktion auf das konduktive thermische Feld auf die kontinentale Lithosphäre untersucht. Zum anderen wurde die Abweichung zwischen transientem und stationären thermischen Feld eines gekoppelten geodynamischen Modells untersucht. Beide Untersuchungen weisen darauf hin, dass die Annahme eines stationären thermischen Felds für den Großteil des Modelliergebiets zulässig ist. Im orogenen Keil, in dem diese Annahme nicht gilt, wurde das transiente thermische Feld mithilfe der erfolgten Untersuchungen abgeschätzt. Entsprechend kann für das Arbeitsgebiet im Vorland das strukturelle Modell aus dem ersten Schritt zur Berechnung des stationären 3D konduktiven thermischen Feldes herangezogen werden. Basierend auf der ermittelten Dichte- und Temperatur-Konfigurationen konnte anschließend die rheologische Konfiguration berechnet werden. Die rheologischen Analysen zeigen, dass die Lithosphäre in Falten- und Überschiebungsgürteln nur eine gerine Festigkeit besitzt und die Kruste Großteil zur integrierten Festigkeit beiträgt. Das benachbarte Vorlandbecken jedoch weist eine vollständig gekoppelte und starke Lithosphäre auf, weshalb Krustenverkürzung nur im vergleichsweise schwachen orogenen Keil aufgenommen werden kann. Daher komme ich zu der Schlussfolgerung, dass die Abscherhorizonte der Falten- und Überschiebungsgürtel die oberflächennahe Fortsetzung von Scherzonen in der duktilen Kruste unterhalb des Orogens sind. Die Lokalisation der Transferzonen zwischen der duktilen Kruste und dem Abscherhorizont sind dabei maßgeblich durch präexistente Schwächezonen in der Kruste beeinflusst. Im zerbrochenen Vorland der Sierras Pampeanas ist die Lithosphäre vollständig gekoppelt und durch einen Mantel hoher Festigkeit charakterisiert. Die sehr hohe integrierte lithosphärische Festigkeit des zerbrochenen Vorlands verhindert die Bildung von Störungen durch tektonische Kräfte. Selbst krustenskalige Schwächezonen können die Festigkeit nicht ausreichend reduzieren, weshalb eine thermische Schwächung benötigt wird. Daher spielt der Magmatismus, der in direkter Nachbarschaft zu den Schwächezonen in der Sierras Pampeanas nachgewiesen wurde, eine Schlüsselrolle in der Entstehung des zerbrochenen Vorlands. Diese Hypothese erklärt die große räumliche Distanz zwischen den Vorlandsockelüberschiebungen, sowie die beobachtete zeitliche Verzögerung zwischen Magmatismus und Hebung der Gebirgskämme. Die vorliegende Studie kann somit aufgrund Daten-integrativer Modellierung einen kausalen Zusammenhang zwischen der Lithosphärenstruktur, den beobachteten Deformationsmechanismen und unabhängigen geologischen Beobachtungen herstellen.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Christian MeeßenORCiDGND
URN:urn:nbn:de:kobv:517-opus4-439945
DOI:https://doi.org/10.25932/publishup-43994
Reviewer(s):Manfred StreckerORCiDGND, Sierd CloetinghORCiDGND, Hans-Jürgen GötzeORCiDGND
Supervisor(s):Manfred Strecker, Magdalena Scheck-Wenderoth
Publication type:Doctoral Thesis
Language:English
Publication year:2019
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/10/07
Release date:2019/12/17
Tag:Anden; Argentinien; Chaco-Paraná Becken; Dichtemodellierung; Rheologie; Vorlandbecken
Andes; Argentina; Chaco-Paraná basin; Density modelling; Foreland basin; Foreland basins; Rheology
Number of pages:xviii, 151
RVK - Regensburg classification:UT 2250, UT 2940, TP 8850
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Extern / Extern
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.