• search hit 5 of 0
Back to Result List

Oligotrophication of a large, deep lake alters food quantity and quality constraints at the primary producer-consumer interface

  • To assess nutritional consequences associated with lake oligotrophication for aquatic consumers, we analyzed the elemental and biochemical composition of natural seston and concomitantly conducted laboratory growth experiments in which the freshwater key herbivore Daphnia was raised on natural seston of the nowadays (2008) oligotrophic Lake Constance throughout an annual cycle. Food quality mediated constraints on Daphnia performance were assessed by comparing somatic growth rates with seston characteristics (multiple regression analysis) and by manipulating the elemental and biochemical composition of natural seston experimentally (nutrient supplementation). Results were compared to similar experiments carried out previously (1997) during a mesotrophic phase of the lake. In the oligotrophic phase, particulate carbon and phosphorus concentrations were lower, fatty acid concentrations were higher, and the taxonomic composition of phytoplankton was less diverse, with a more diatom- and cryptophytes-dominated community, compared to theTo assess nutritional consequences associated with lake oligotrophication for aquatic consumers, we analyzed the elemental and biochemical composition of natural seston and concomitantly conducted laboratory growth experiments in which the freshwater key herbivore Daphnia was raised on natural seston of the nowadays (2008) oligotrophic Lake Constance throughout an annual cycle. Food quality mediated constraints on Daphnia performance were assessed by comparing somatic growth rates with seston characteristics (multiple regression analysis) and by manipulating the elemental and biochemical composition of natural seston experimentally (nutrient supplementation). Results were compared to similar experiments carried out previously (1997) during a mesotrophic phase of the lake. In the oligotrophic phase, particulate carbon and phosphorus concentrations were lower, fatty acid concentrations were higher, and the taxonomic composition of phytoplankton was less diverse, with a more diatom- and cryptophytes-dominated community, compared to the previous mesotrophic phase. Multiple regression analysis indicated a shift from a simultaneous limitation by food quantity (in terms of carbon) and quality (i.e. a-linolenic acid) during the mesotrophic phase to a complex multiple nutrient limitation mediated by food quantity, phosphorus, and omega-3 fatty acids in the following oligotrophic phase. The concomitant supplementation experiments also revealed seasonal changes in multiple resource limitations, i.e. the prevalent limitation by food quantity was accompanied by a simultaneous limitation by either phosphorus or omega-3 fatty acids, and thus confirmed and complemented the multiple regression approach. Our results indicate that seasonal and annual changes in nutrient availabilities can create complex co-limitation scenarios consumers have to cope with, which consequently may also affect the efficiency of energy transfer in food webs.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Melanie Hartwich, Dominik Martin-CreuzburgORCiDGND, Karl-Otto Rothhaupt, Alexander WackerORCiDGND
DOI:https://doi.org/10.1111/j.1600-0706.2011.20461.x
ISSN:0030-1299
Title of parent work (English):Oikos
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:121
Issue:10
Number of pages:11
First page:1702
Last Page:1712
Funding institution:German Research Foundation [DFG RO 1008/12-1, WA 2445/4-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.